File size: 799 Bytes
35bf230 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import torch
from typing import Dict, List, Any
from transformers import pipeline
# check for GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EndpointHandler():
def __init__(self, path=""):
# Preload all the elements you are going to need at inference.
# pseudo:
self.pipeline= pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning", device=device)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
inputs = data.pop("inputs", data)
return self.pipeline(inputs)
|