File size: 32,432 Bytes
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
155e823
 
a244e91
155e823
 
 
 
a244e91
155e823
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
a244e91
 
 
 
 
155e823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0817d00
155e823
 
a244e91
 
 
 
 
 
 
155e823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
155e823
a244e91
 
 
155e823
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
58a121d
155e823
a244e91
 
 
 
 
155e823
 
 
 
 
a244e91
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
155e823
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a121d
155e823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
155e823
a244e91
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
155e823
 
 
a244e91
 
 
155e823
a244e91
 
 
 
155e823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
 
 
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
155e823
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155e823
 
 
 
 
 
 
 
 
 
a244e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from jax import lax

from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPast, FlaxCausalLMOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions
from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from transformers.utils import logging
from transformers.models.gpt2.configuration_gpt2 import GPT2Config


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"


GPT2_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a Flax Linen `flax.nn.Module
    <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax
    Module and refer to the Flax documentation for all matter related to general usage and behavior.

    Finally, this model supports inherent JAX features such as:

    - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__
    - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__
    - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__
    - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__

    Parameters:
        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the
            model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, input_ids_length)`):
            :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.
        past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``):
            Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
            auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


class FlaxConv1D(nn.Module):
    features: int
    use_bias: bool = True
    dtype: Any = jnp.float32
    precision: Any = None

    @nn.compact
    def __call__(self, inputs):
        inputs = jnp.asarray(inputs, self.dtype)
        kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1]))
        kernel = jnp.asarray(kernel.transpose(), self.dtype)
        y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision)
        if self.use_bias:
            bias = self.param("bias", jax.nn.initializers.zeros, (self.features,))
            bias = jnp.asarray(bias, self.dtype)
            y = y + bias
        return y


class FlaxGPT2Attention(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32
    causal: bool = True
    self_attn: bool = True

    def setup(self):
        config = self.config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads

        factor = 3 if self.self_attn else 2
        self.c_attn = FlaxConv1D(features=factor * self.embed_dim, dtype=self.dtype)
        self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype)

        if not self.self_attn:
            self.c_query_attn = FlaxConv1D(features=1 * self.embed_dim, dtype=self.dtype)

        self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
        if self.causal:
            self.causal_mask = make_causal_mask(
                jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool"
            )

    def _split_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))

    def _merge_heads(self, hidden_states):
        return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))

    @nn.compact
    def _concatenate_to_cache(self, key, value, query, attention_mask):
        """
        This function takes projected key, value states from a single input token and concatenates the states to cached
        states from previous steps. This function is slighly adapted from the official Flax repository:
        https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
        """
        # detect if we're initializing by absence of existing cache data.
        is_initialized = self.has_variable("cache", "cached_key")
        cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
        cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
        cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))

        if is_initialized:
            *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
            # update key, value caches with our new 1d spatial slices
            cur_index = cache_index.value
            indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
            key = lax.dynamic_update_slice(cached_key.value, key, indices)
            value = lax.dynamic_update_slice(cached_value.value, value, indices)
            cached_key.value = key
            cached_value.value = value
            num_updated_cache_vectors = query.shape[1]
            cache_index.value = cache_index.value + num_updated_cache_vectors
            # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
            pad_mask = jnp.broadcast_to(
                jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
                tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
            )
            attention_mask = combine_masks(pad_mask, attention_mask)
        return key, value, attention_mask

    def __call__(
        self,
        hidden_states,
        key_value_states: Optional[jnp.ndarray] = None,
        attention_mask=None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        if not is_cross_attention:
            # self_attention
            assert self.self_attn
            qkv_out = self.c_attn(hidden_states)
            query, key, value = jnp.split(qkv_out, 3, axis=2)
        else:
            # cross_attentions
            assert not self.self_attn
            assert not self.causal
            q_out = self.c_query_attn(hidden_states)
            (query,) = jnp.split(q_out, 1, axis=2)
            kv_out = self.c_attn(key_value_states)
            key, value = jnp.split(kv_out, 2, axis=2)

        query = self._split_heads(query)
        key = self._split_heads(key)
        value = self._split_heads(value)

        query_length, key_length = query.shape[1], key.shape[1]

        if self.causal:
            if self.has_variable("cache", "cached_key"):
                mask_shift = self.variables["cache"]["cache_index"]
                max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
                causal_mask = lax.dynamic_slice(
                    self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
                )
            else:
                causal_mask = self.causal_mask[:, :, :query_length, :key_length]

            batch_size = hidden_states.shape[0]
            causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])

        # combine masks if needed
        if attention_mask is not None and self.causal:
            attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
            attention_mask = combine_masks(attention_mask, causal_mask)
        elif self.causal:
            attention_mask = causal_mask
        elif attention_mask is not None:
            attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))

        dropout_rng = None
        if not deterministic and self.config.attn_pdrop > 0.0:
            dropout_rng = self.make_rng("dropout")

        # During fast autoregressive decoding, we feed one position at a time,
        # and cache the keys and values step by step.
        if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
            key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)

        # transform boolean mask into float mask
        if attention_mask is not None:
            attention_bias = lax.select(
                attention_mask > 0,
                jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
                jnp.full(attention_mask.shape, -1e4).astype(self.dtype),
            )
        else:
            attention_bias = None

        # usual dot product attention
        attn_weights = dot_product_attention_weights(
            query,
            key,
            bias=attention_bias,
            dropout_rng=dropout_rng,
            dropout_rate=self.config.attn_pdrop,
            deterministic=deterministic,
            dtype=self.dtype,
            precision=None,
        )

        attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
        attn_output = self._merge_heads(attn_output)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output, deterministic=deterministic)

        outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
        return outputs


class FlaxGPT2MLP(nn.Module):
    config: GPT2Config
    intermediate_size: int
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        embed_dim = self.config.hidden_size
        self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype)
        self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype)
        self.act = ACT2FN[self.config.activation_function]
        self.dropout = nn.Dropout(rate=self.config.resid_pdrop)

    def __call__(self, hidden_states, deterministic: bool = True):
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)
        return hidden_states


class FlaxGPT2Block(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):

        self.only_self_attn = not self.config.add_cross_attention

        hidden_size = self.config.hidden_size
        inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
        self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype)

        if not self.only_self_attn:
            self.encoder_ln = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
            self.encoder_attn = FlaxGPT2Attention(config=self.config, dtype=self.dtype, causal=False, self_attn=False)

        self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
        self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype)

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
    ):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        outputs = self.attn(
            hidden_states,
            attention_mask=attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
        )
        # residual connection
        attn_output = outputs[0]
        hidden_states = attn_output + residual

        # sanity check
        if not self.only_self_attn:
            assert encoder_hidden_states is not None
        else:
            assert encoder_hidden_states is None

        # Cross-Attention Block
        cross_attn_weights = None
        if encoder_hidden_states is not None:

            residual = hidden_states
            hidden_states = self.encoder_ln(hidden_states)

            cross_attn_outputs = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                deterministic=deterministic,
                # `init_cache` is only for decoder's `self_attn`
                init_cache=False,
                output_attentions=output_attentions,
            )
            # residual connection
            cross_attn_output = cross_attn_outputs[0]
            hidden_states = cross_attn_output + residual

            if output_attentions:
                cross_attn_weights = cross_attn_outputs[1]

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            self_attn_weights = attn_output[1]
            outputs += (self_attn_weights,)
            if not self.only_self_attn:
                outputs += (cross_attn_weights,)

        return outputs


class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPT2Config
    base_model_prefix = "transformer"
    module_class: nn.Module = None

    def __init__(
        self,
        config: GPT2Config,
        input_shape: Tuple = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensors
        input_ids = jnp.zeros(input_shape, dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        if self.config.add_cross_attention:
            encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
            encoder_attention_mask = attention_mask
            module_init_outputs = self.module.init(
                rngs, input_ids, attention_mask, position_ids,
                encoder_hidden_states, encoder_attention_mask, return_dict=False
            )
        else:
            module_init_outputs = self.module.init(
                rngs, input_ids, attention_mask, position_ids, return_dict=False
            )

        return module_init_outputs["params"]

    # TODO: Remove if OK
    # @classmethod
    # def _from_config(cls, config, **kwargs):
    #    return super()._from_config(config, **kwargs)

    def init_cache(self, batch_size, max_length):
        r"""
        Args:
            batch_size (:obj:`int`):
                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
            max_length (:obj:`int`):
                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
                cache.
        """
        # init input variables to retrieve cache
        input_ids = jnp.ones((batch_size, max_length))
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)

        init_variables = self.module.init(
            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
        )
        return init_variables["cache"]

    @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
    def __call__(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        params: dict = None,
        past_key_values: dict = None,
        dropout_rng: jax.random.PRNGKey = None,
        train: bool = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.return_dict

        if encoder_hidden_states is not None and encoder_attention_mask is None:
            batch_size, sequence_length = encoder_hidden_states.shape[:2]
            encoder_attention_mask = jnp.ones((batch_size, sequence_length))

        batch_size, sequence_length = input_ids.shape

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")

            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        outputs = self.module.apply(
            inputs,
            jnp.array(input_ids, dtype="i4"),
            jnp.array(attention_mask, dtype="i4"),
            jnp.array(position_ids, dtype="i4"),
            encoder_hidden_states,
            encoder_attention_mask,
            not train,
            False,
            output_attentions,
            output_hidden_states,
            return_dict,
            rngs=rngs,
            mutable=mutable,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past_key_values = outputs
            outputs["past_key_values"] = unfreeze(past_key_values["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past_key_values = outputs
            outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]

        return outputs


class FlaxGPT2BlockCollection(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.blocks = [
            FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
        ]

    def __call__(
        self,
        hidden_states,
        attention_mask=None,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = block(
                hidden_states,
                attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                deterministic=deterministic,
                init_cache=init_cache,
                output_attentions=output_attentions,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        outputs = [hidden_states, all_hidden_states, all_attentions, all_cross_attentions]

        if not return_dict:
            return tuple(v for v in outputs if v is not None)

        if encoder_hidden_states is None:
            # only self_attn
            return FlaxBaseModelOutputWithPast(
                last_hidden_state=hidden_states,
                past_key_values=None,
                hidden_states=all_hidden_states,
                attentions=all_attentions,
            )
        else:
            # with cross_attn
            return FlaxBaseModelOutputWithPastAndCrossAttentions(
                last_hidden_state=hidden_states,
                past_key_values=None,
                hidden_states=all_hidden_states,
                attentions=all_attentions,
                cross_attentions=all_cross_attentions,
            )

class FlaxGPT2Module(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.embed_dim = self.config.hidden_size

        self.wte = nn.Embed(
            self.config.vocab_size,
            self.embed_dim,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.wpe = nn.Embed(
            self.config.max_position_embeddings,
            self.embed_dim,
            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
            dtype=self.dtype,
        )
        self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
        self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)
        self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)

    def __call__(
        self,
        input_ids,
        attention_mask,
        position_ids,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        deterministic=True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        input_embeds = self.wte(input_ids.astype("i4"))
        position_embeds = self.wpe(position_ids.astype("i4"))

        hidden_states = input_embeds + position_embeds
        hidden_states = self.dropout(hidden_states, deterministic=deterministic)

        outputs = self.h(
            hidden_states,
            attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = self.ln_f(hidden_states)

        if not return_dict:
            return (hidden_states,) + outputs[1:]

        if encoder_hidden_states is None:
            return FlaxBaseModelOutput(
                last_hidden_state=hidden_states,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )
        else:
            return FlaxBaseModelOutputWithPastAndCrossAttentions(
                last_hidden_state=hidden_states,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
                cross_attentions=outputs.cross_attentions,
            )

@add_start_docstrings(
    "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
    GPT2_START_DOCSTRING,
)
class FlaxGPT2Model(FlaxGPT2PreTrainedModel):
    module_class = FlaxGPT2Module


append_call_sample_docstring(
    FlaxGPT2Model, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC
)


class FlaxGPT2LMHeadModule(nn.Module):
    config: GPT2Config
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype)
        self.lm_head = nn.Dense(
            self.config.vocab_size,
            use_bias=False,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range, dtype=self.dtype),
        )

    def __call__(
        self,
        input_ids,
        attention_mask,
        position_ids,
        encoder_hidden_states: Optional[jnp.ndarray] = None,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        deterministic: bool = True,
        init_cache: bool = False,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ):
        outputs = self.transformer(
            input_ids,
            attention_mask,
            position_ids,
            encoder_hidden_states,
            encoder_attention_mask,
            deterministic=deterministic,
            init_cache=init_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        if self.config.tie_word_embeddings:
            shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
            lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
        else:
            lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            return (lm_logits,) + outputs[1:]

        if encoder_hidden_states is None:
            return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
        else:
            return FlaxCausalLMOutputWithCrossAttentions(
                logits=lm_logits,
                past_key_values=None,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
                cross_attentions=outputs.cross_attentions
            )

@add_start_docstrings(
    """
    The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
    embeddings).
    """,
    GPT2_START_DOCSTRING,
)
class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel):
    module_class = FlaxGPT2LMHeadModule

    def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None):
        # initializing the cache
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since GPT2 uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
        else:
            position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))

        return {
            "past_key_values": past_key_values,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
        return model_kwargs


append_call_sample_docstring(
    FlaxGPT2LMHeadModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC
)