File size: 1,607 Bytes
cb7736c a292afa 85923f2 527646e 61081a7 d7569a3 2b043c5 095dc7f 2b043c5 5fe556c db2fe2a 5fe556c ff56d42 b70ae6c ae20d40 d870127 ff56d42 426a99f ff56d42 5fe556c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language: sw
widget:
- text: "Si kila mwenye makucha <mask> simba."
datasets:
- flax-community/swahili-safi
---
## RoBERTa in Swahili
This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team.
## How to use
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("flax-community/roberta-swahili")
model = AutoModelForMaskedLM.from_pretrained("flax-community/roberta-swahili")
print(round((model.num_parameters())/(1000*1000)),"Million Parameters")
105 Million Parameters
```
#### **Training Data**:
This model was trained on [Swahili Safi](https://huggingface.co/datasets/flax-community/swahili-safi)
#### **Results**:
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OIurb4J91X7461NQXLCCGzjeEGJq_Tyl?usp=sharing)
```
Eval metrics: {'f1': 86%}
```
This [model](https://huggingface.co/flax-community/roberta-swahili-news-classification) was fine-tuned based off this model for the
[Zindi News Classification Challenge](https://zindi.africa/hackathons/ai4d-swahili-news-classification-challenge)
#### **More Details**:
For more details and Demo please check [HF Swahili Space](https://huggingface.co/spaces/flax-community/Swahili)
|