File size: 17,884 Bytes
9bd1fec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
/home/dat/pino/lib/python3.8/site-packages/jax/lib/xla_bridge.py:382: UserWarning: jax.host_count has been renamed to jax.process_count. This alias will eventually be removed; please update your code.
warnings.warn(
/home/dat/pino/lib/python3.8/site-packages/jax/lib/xla_bridge.py:369: UserWarning: jax.host_id has been renamed to jax.process_index. This alias will eventually be removed; please update your code.
warnings.warn(
Epoch ... (1/5): 0%| | 0/5 [00:00<?, ?it/s]
Traceback (most recent call last): | 0/46383 [00:00<?, ?it/s]
File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
self.run()
File "/usr/lib/python3.8/threading.py", line 870, in run
self._target(*self._args, **self._kwargs)
File "/home/dat/pino/lib/python3.8/site-packages/wandb/sdk/wandb_run.py", line 183, in check_network_status
status_response = self._interface.communicate_network_status()
File "/home/dat/pino/lib/python3.8/site-packages/wandb/sdk/interface/interface.py", line 755, in communicate_network_status
resp = self._communicate(req, timeout=timeout, local=True)
File "/home/dat/pino/lib/python3.8/site-packages/wandb/sdk/interface/interface.py", line 545, in _communicate
return self._communicate_async(rec, local=local).get(timeout=timeout)
File "/home/dat/pino/lib/python3.8/site-packages/wandb/sdk/interface/interface.py", line 550, in _communicate_async
raise Exception("The wandb backend process has shutdown")
Exception: The wandb backend process has shutdown
Training...: 0%| | 0/46383 [01:25<?, ?it/s]
Epoch ... (1/5): 0%| | 0/5 [02:13<?, ?it/s]
Traceback (most recent call last):
File "/home/dat/pino/lib/python3.8/site-packages/jax/_src/traceback_util.py", line 183, in reraise_with_filtered_traceback
return fun(*args, **kwargs)
File "/home/dat/pino/lib/python3.8/site-packages/jax/_src/api.py", line 1647, in f_pmapped
out = pxla.xla_pmap(
File "/home/dat/pino/lib/python3.8/site-packages/jax/core.py", line 1620, in bind
return call_bind(self, fun, *args, **params)
File "/home/dat/pino/lib/python3.8/site-packages/jax/core.py", line 1551, in call_bind
outs = primitive.process(top_trace, fun, tracers, params)
File "/home/dat/pino/lib/python3.8/site-packages/jax/core.py", line 1623, in process
return trace.process_map(self, fun, tracers, params)
File "/home/dat/pino/lib/python3.8/site-packages/jax/core.py", line 606, in process_call
return primitive.impl(f, *tracers, **params)
File "/home/dat/pino/lib/python3.8/site-packages/jax/interpreters/pxla.py", line 624, in xla_pmap_impl
compiled_fun, fingerprint = parallel_callable(fun, backend, axis_name, axis_size,
File "/home/dat/pino/lib/python3.8/site-packages/jax/linear_util.py", line 262, in memoized_fun
ans = call(fun, *args)
File "/home/dat/pino/lib/python3.8/site-packages/jax/interpreters/pxla.py", line 899, in parallel_callable
compiled = xla.backend_compile(backend, built, compile_options)
File "/home/dat/pino/lib/python3.8/site-packages/jax/interpreters/xla.py", line 360, in backend_compile
return backend.compile(built_c, compile_options=options)
RuntimeError: Resource exhausted: Ran out of memory in memory space hbm. Used 20.30G of 15.48G hbm. Exceeded hbm capacity by 4.82G.
Total hbm usage >= 20.82G:
reserved 530.00M
program 20.30G
arguments 0B
Output size 0B; shares 0B with arguments.
Program hbm requirement 20.30G:
global 660.0K
scoped 125.0K
HLO temp 20.30G (63.5% utilization: Unpadded (12.44G) Padded (19.60G), 3.5% fragmentation (717.54M))
Largest program allocations in hbm:
1. Size: 1.54G
Operator: op_type="dot_general" op_name="pmap(train_step)/dot_general[ dimension_numbers=(((2,), (0,)), ((), ()))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/pino/lib/python3.8/site-packages/flax/linen/linear.py" source_line=175
Shape: bf16[4,4096,50358]{1,2,0:T(8,128)(2,1)}
Unpadded size: 1.54G
Extra memory due to padding: 64.0K (1.0x expansion)
XLA label: %fusion.1304.remat4 = bf16[4,4096,50358]{1,2,0:T(8,128)(2,1)} fusion(bf16[50358,768]{1,0:T(8,128)(2,1)} %copy.16213, f32[768]{0:T(1024)} %fusion.8859, f32[768]{0:T(1024)} %fusion.8860, f32[4,4096]{1,0:T(4,128)} %get-tuple-element.16597, f32[4,4096]{1,0:T(4...
Allocation type: HLO temp
==========================
2. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.135 = bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)} fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.485, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5710, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} %get-tuple-element.16812, f32[4,12,60,64,192]{3,4,2,1,0...
Allocation type: HLO temp
==========================
3. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.144.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.494, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5719, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
4. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.143.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.493, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5718, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
5. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.142.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.492, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5717, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
6. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.141.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.491, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5716, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
7. Size: 360.00M
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.134.remat_uncompressed = bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)} copy(bf16[4,12,60,64,512]{4,3,2,1,0:T(8,128)(2,1)} %fusion.134.remat_compressed)
Allocation type: HLO temp
==========================
8. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.140.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.490, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5715, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
9. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.139.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.489, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5714, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
10. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.138.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.488, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5713, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
11. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.137.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.487, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5712, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
12. Size: 360.00M
Operator: op_type="div" op_name="pmap(train_step)/div" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=619
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.136.remat = (bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}, bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}) fusion(f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.486, f32[4,12,60,64]{3,2,1,0:T(8,128)} %fusion.5711, f32[4,12,60,64,64]{3,4,2,1,0:T(8,128)} ...
Allocation type: HLO temp
==========================
13. Size: 360.00M
Shape: bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)}
Unpadded size: 180.00M
Extra memory due to padding: 180.00M (2.0x expansion)
XLA label: %fusion.133.remat_uncompressed = bf16[4,12,60,64,512]{3,4,2,1,0:T(8,128)(2,1)} copy(bf16[4,12,60,64,512]{4,3,2,1,0:T(8,128)(2,1)} %fusion.133.remat_compressed)
Allocation type: HLO temp
==========================
14. Size: 270.00M
Operator: op_type="dot_general" op_name="pmap(train_step)/jit(jvp(_einsum))/dot_general[ dimension_numbers=(((4,), (4,)), ((0, 1, 2), (0, 1, 2)))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=584
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.378.remat5 = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} fusion(f32[4,60,64,192]{2,3,1,0:T(8,128)} %get-tuple-element.17038, bf16[4,12,64,64,64]{4,3,2,1,0:T(8,128)(2,1)} %copy.14428, bf16[4,12,60,192,64]{3,2,4,1,0:T(8,128)(2,1)} %fusion.655), kind=kOut...
Allocation type: HLO temp
==========================
15. Size: 270.00M
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.310.remat_uncompressed = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} copy(f32[4,12,60,64,192]{4,3,2,1,0:T(8,128)} %fusion.310.remat_compressed)
Allocation type: HLO temp
==========================
16. Size: 270.00M
Operator: op_type="dot_general" op_name="pmap(train_step)/jit(jvp(_einsum))/dot_general[ dimension_numbers=(((4,), (4,)), ((0, 1, 2), (0, 1, 2)))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=584
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.386.remat6 = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} fusion(f32[4,60,64,192]{2,3,1,0:T(8,128)} %get-tuple-element.17038, bf16[4,12,64,64,64]{4,3,2,1,0:T(8,128)(2,1)} %copy.13900, bf16[4,12,60,192,64]{3,2,4,1,0:T(8,128)(2,1)} %fusion.639), kind=kOut...
Allocation type: HLO temp
==========================
17. Size: 270.00M
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.326.remat_uncompressed.remat2 = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} copy(f32[4,12,60,64,192]{4,3,2,1,0:T(8,128)} %fusion.326.remat_compressed)
Allocation type: HLO temp
==========================
18. Size: 270.00M
Operator: op_type="dot_general" op_name="pmap(train_step)/jit(jvp(_einsum))/dot_general[ dimension_numbers=(((4,), (4,)), ((0, 1, 2), (0, 1, 2)))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=591
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.10361 = (f32[4,12,60,64]{3,2,1,0:T(8,128)}, f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}) fusion(s32[4,12,62,64,192]{3,4,2,1,0:T(8,128)} %get-tuple-element.18295, bf16[4,12,64,64,64]{4,3,2,1,0:T(8,128)(2,1)} %copy.14494, bf16[4,12,60,192,64]{3,2,1,0,4:T...
Allocation type: HLO temp
==========================
19. Size: 270.00M
Operator: op_type="dot_general" op_name="pmap(train_step)/jit(jvp(_einsum))/dot_general[ dimension_numbers=(((4,), (4,)), ((0, 1, 2), (0, 1, 2)))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=584
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.380.remat5 = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} fusion(f32[4,60,64,192]{2,3,1,0:T(8,128)} %get-tuple-element.17038, bf16[4,12,64,64,64]{4,3,2,1,0:T(8,128)(2,1)} %copy.14296, bf16[4,12,60,192,64]{3,2,4,1,0:T(8,128)(2,1)} %fusion.651), kind=kOut...
Allocation type: HLO temp
==========================
20. Size: 270.00M
Operator: op_type="dot_general" op_name="pmap(train_step)/jit(jvp(_einsum))/dot_general[ dimension_numbers=(((4,), (4,)), ((0, 1, 2), (0, 1, 2)))\n precision=None\n preferred_element_type=None ]" source_file="/home/dat/transformers/src/transformers/models/big_bird/modeling_flax_big_bird.py" source_line=584
Shape: f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)}
Unpadded size: 135.00M
Extra memory due to padding: 135.00M (2.0x expansion)
XLA label: %fusion.379.remat3 = f32[4,12,60,64,192]{3,4,2,1,0:T(8,128)} fusion(f32[4,60,64,192]{2,3,1,0:T(8,128)} %get-tuple-element.17038, bf16[4,12,64,64,64]{4,3,2,1,0:T(8,128)(2,1)} %copy.14362, bf16[4,12,60,192,64]{3,2,4,1,0:T(8,128)(2,1)} %fusion.653), kind=kOut...
Allocation type: HLO temp
==========================
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "./run_mlm_flax.py", line 709, in <module>
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
File "/home/dat/pino/lib/python3.8/site-packages/jax/_src/traceback_util.py", line 183, in reraise_with_filtered_traceback
return fun(*args, **kwargs)
KeyboardInterrupt |