File size: 10,149 Bytes
5775f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""JAX-based Dormand-Prince ODE integration with adaptive stepsize.
Integrate systems of ordinary differential equations (ODEs) using the JAX
autograd/diff library and the Dormand-Prince method for adaptive integration
stepsize calculation. Provides improved integration accuracy over fixed
stepsize integration methods.
For details of the mixed 4th/5th order Runge-Kutta integration method, see
https://doi.org/10.1090/S0025-5718-1986-0815836-3
Adjoint algorithm based on Appendix C of https://arxiv.org/pdf/1806.07366.pdf
"""


from functools import partial
import operator as op

import jax
import jax.numpy as jnp
from jax import core
from jax import custom_derivatives
from jax import lax
from jax._src.util import safe_map, safe_zip
from jax.flatten_util import ravel_pytree
from jax.tree_util import tree_map
from jax import linear_util as lu

map = safe_map
zip = safe_zip


def ravel_first_arg(f, unravel):
  return ravel_first_arg_(lu.wrap_init(f), unravel).call_wrapped

@lu.transformation
def ravel_first_arg_(unravel, y_flat, *args):
  y = unravel(y_flat)
  ans = yield (y,) + args, {}
  ans_flat, _ = ravel_pytree(ans)
  yield ans_flat

def interp_fit_dopri(y0, y1, k, dt):
  # Fit a polynomial to the results of a Runge-Kutta step.
  dps_c_mid = jnp.array([
      6025192743 / 30085553152 / 2, 0, 51252292925 / 65400821598 / 2,
      -2691868925 / 45128329728 / 2, 187940372067 / 1594534317056 / 2,
      -1776094331 / 19743644256 / 2, 11237099 / 235043384 / 2])
  y_mid = y0 + dt * jnp.dot(dps_c_mid, k)
  return jnp.asarray(fit_4th_order_polynomial(y0, y1, y_mid, k[0], k[-1], dt))

def fit_4th_order_polynomial(y0, y1, y_mid, dy0, dy1, dt):
  a = -2.*dt*dy0 + 2.*dt*dy1 -  8.*y0 -  8.*y1 + 16.*y_mid
  b =  5.*dt*dy0 - 3.*dt*dy1 + 18.*y0 + 14.*y1 - 32.*y_mid
  c = -4.*dt*dy0 +    dt*dy1 - 11.*y0 -  5.*y1 + 16.*y_mid
  d = dt * dy0
  e = y0
  return a, b, c, d, e

def initial_step_size(fun, t0, y0, order, rtol, atol, f0):
  # Algorithm from:
  # E. Hairer, S. P. Norsett G. Wanner,
  # Solving Ordinary Differential Equations I: Nonstiff Problems, Sec. II.4.
  scale = atol + jnp.abs(y0) * rtol
  d0 = jnp.linalg.norm(y0 / scale)
  d1 = jnp.linalg.norm(f0 / scale)

  h0 = jnp.where((d0 < 1e-5) | (d1 < 1e-5), 1e-6, 0.01 * d0 / d1)

  y1 = y0 + h0 * f0

  f1 = fun(y1, t0 + h0)
  d2 = jnp.linalg.norm((f1 - f0) / scale) / h0

  h1 = jnp.where((d1 <= 1e-15) & (d2 <= 1e-15),
                jnp.maximum(1e-6, h0 * 1e-3),
                (0.01 / jnp.max(d1 + d2)) ** (1. / (order + 1.)))

  return jnp.minimum(100. * h0, h1)

def runge_kutta_step(func, y0, f0, t0, dt):
  # Dopri5 Butcher tableaux
  alpha = jnp.array([1 / 5, 3 / 10, 4 / 5, 8 / 9, 1., 1., 0])
  beta = jnp.array([
      [1 / 5, 0, 0, 0, 0, 0, 0],
      [3 / 40, 9 / 40, 0, 0, 0, 0, 0],
      [44 / 45, -56 / 15, 32 / 9, 0, 0, 0, 0],
      [19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729, 0, 0, 0],
      [9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656, 0, 0],
      [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0]
  ])
  c_sol = jnp.array([35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0])
  c_error = jnp.array([35 / 384 - 1951 / 21600, 0, 500 / 1113 - 22642 / 50085,
                      125 / 192 - 451 / 720, -2187 / 6784 - -12231 / 42400,
                      11 / 84 - 649 / 6300, -1. / 60.])

  def body_fun(i, k):
    ti = t0 + dt * alpha[i-1]
    yi = y0 + dt * jnp.dot(beta[i-1, :], k)
    ft = func(yi, ti)
    return k.at[i, :].set(ft)

  k = jnp.zeros((7, f0.shape[0]), f0.dtype).at[0, :].set(f0)
  k = lax.fori_loop(1, 7, body_fun, k)

  y1 = dt * jnp.dot(c_sol, k) + y0
  y1_error = dt * jnp.dot(c_error, k)
  f1 = k[-1]
  return y1, f1, y1_error, k

def abs2(x):
  if jnp.iscomplexobj(x):
    return x.real ** 2 + x.imag ** 2
  else:
    return x ** 2

def error_ratio(error_estimate, rtol, atol, y0, y1):
  err_tol = atol + rtol * jnp.maximum(jnp.abs(y0), jnp.abs(y1))
  err_ratio = error_estimate / err_tol
  return jnp.mean(abs2(err_ratio))

def optimal_step_size(last_step, mean_error_ratio, safety=0.9, ifactor=10.0,
                      dfactor=0.2, order=5.0):
  """Compute optimal Runge-Kutta stepsize."""
  mean_error_ratio = jnp.max(mean_error_ratio)
  dfactor = jnp.where(mean_error_ratio < 1, 1.0, dfactor)

  err_ratio = jnp.sqrt(mean_error_ratio)
  factor = jnp.maximum(1.0 / ifactor,
                      jnp.minimum(err_ratio**(1.0 / order) / safety, 1.0 / dfactor))
  return jnp.where(mean_error_ratio == 0, last_step * ifactor, last_step / factor)

def odeint(func, y0, t, *args, rtol=1.4e-8, atol=1.4e-8, mxstep=jnp.inf):
  """Adaptive stepsize (Dormand-Prince) Runge-Kutta odeint implementation.
  Args:
    func: function to evaluate the time derivative of the solution `y` at time
      `t` as `func(y, t, *args)`, producing the same shape/structure as `y0`.
    y0: array or pytree of arrays representing the initial value for the state.
    t: array of float times for evaluation, like `jnp.linspace(0., 10., 101)`,
      in which the values must be strictly increasing.
    *args: tuple of additional arguments for `func`, which must be arrays
      scalars, or (nested) standard Python containers (tuples, lists, dicts,
      namedtuples, i.e. pytrees) of those types.
    rtol: float, relative local error tolerance for solver (optional).
    atol: float, absolute local error tolerance for solver (optional).
    mxstep: int, maximum number of steps to take for each timepoint (optional).
  Returns:
    Values of the solution `y` (i.e. integrated system values) at each time
    point in `t`, represented as an array (or pytree of arrays) with the same
    shape/structure as `y0` except with a new leading axis of length `len(t)`.
  """
  def _check_arg(arg):
    if not isinstance(arg, core.Tracer) and not core.valid_jaxtype(arg):
      msg = ("The contents of odeint *args must be arrays or scalars, but got "
             "\n{}.")
      raise TypeError(msg.format(arg))

  converted, consts = custom_derivatives.closure_convert(func, y0, t[0], *args)
  return _odeint_wrapper(converted, rtol, atol, mxstep, y0, t, *args, *consts)

@partial(jax.jit, static_argnums=(0, 1, 2, 3))
def _odeint_wrapper(func, rtol, atol, mxstep, y0, ts, *args):
  y0, unravel = ravel_pytree(y0)
  func = ravel_first_arg(func, unravel)
  out = _odeint(func, rtol, atol, mxstep, y0, ts, *args)
  return jax.vmap(unravel)(out)

@partial(jax.custom_vjp, nondiff_argnums=(0, 1, 2, 3))
def _odeint(func, rtol, atol, mxstep, y0, ts, *args):
  func_ = lambda y, t: func(y, t, *args)

  def scan_fun(carry, target_t):

    def cond_fun(state):
      i, _, _, t, dt, _, _ = state
      return (t < target_t) & (i < mxstep) & (dt > 0)

    def body_fun(state):
      i, y, f, t, dt, last_t, interp_coeff = state
      next_y, next_f, next_y_error, k = runge_kutta_step(func_, y, f, t, dt)
      next_t = t + dt
      error_ratios = error_ratio(next_y_error, rtol, atol, y, next_y)
      new_interp_coeff = interp_fit_dopri(y, next_y, k, dt)
      dt = optimal_step_size(dt, error_ratios)

      new = [i + 1, next_y, next_f, next_t, dt,      t, new_interp_coeff]
      old = [i + 1,      y,      f,      t, dt, last_t,     interp_coeff]
      return map(partial(jnp.where, jnp.all(error_ratios <= 1.)), new, old)

    _, *carry = lax.while_loop(cond_fun, body_fun, [0] + carry)
    _, _, t, _, last_t, interp_coeff = carry
    relative_output_time = (target_t - last_t) / (t - last_t)
    y_target = jnp.polyval(interp_coeff, relative_output_time)
    return carry, y_target

  # ODEfunc with NFE counter will give auxilarly output for nfe.
  # Below code is modified to skip that output.
  f0 = func_(y0, ts[0])
  dt = initial_step_size(func_, ts[0], y0, 4, rtol, atol, f0)
  interp_coeff = jnp.array([y0] * 5)
  init_carry = [y0, f0, ts[0], dt, ts[0], interp_coeff]
  _, ys = lax.scan(scan_fun, init_carry, ts[1:])
  return jnp.concatenate((y0[None], ys))

def _odeint_fwd(func, rtol, atol, mxstep, y0, ts, *args):
  ys = _odeint(func, rtol, atol, mxstep, y0, ts, *args)
  return ys, (ys, ts, args)

def _odeint_rev(func, rtol, atol, mxstep, res, g):
  ys, ts, args = res

  def aug_dynamics(augmented_state, t, *args):
    """Original system augmented with vjp_y, vjp_t and vjp_args."""
    y, y_bar, *_ = augmented_state
    # `t` here is negatice time, so we need to negate again to get back to
    # normal time. See the `odeint` invocation in `scan_fun` below.
    y_dot, vjpfun = jax.vjp(func, y, -t, *args)
    return (-y_dot, *vjpfun(y_bar))

  y_bar = g[-1]
  ts_bar = []
  t0_bar = 0.

  def scan_fun(carry, i):
    y_bar, t0_bar, args_bar = carry
    # Compute effect of moving measurement time
    # `t_bar` should not be complex as it represents time
    t_bar = jnp.dot(func(ys[i], ts[i], *args), g[i]).real
    t0_bar = t0_bar - t_bar
    # Run augmented system backwards to previous observation
    _, y_bar, t0_bar, args_bar = odeint(
        aug_dynamics, (ys[i], y_bar, t0_bar, args_bar),
        jnp.array([-ts[i], -ts[i - 1]]),
        *args, rtol=rtol, atol=atol, mxstep=mxstep)
    y_bar, t0_bar, args_bar = tree_map(op.itemgetter(1), (y_bar, t0_bar, args_bar))
    # Add gradient from current output
    y_bar = y_bar + g[i - 1]
    return (y_bar, t0_bar, args_bar), t_bar

  init_carry = (g[-1], 0., tree_map(jnp.zeros_like, args))
  (y_bar, t0_bar, args_bar), rev_ts_bar = lax.scan(
      scan_fun, init_carry, jnp.arange(len(ts) - 1, 0, -1))
  ts_bar = jnp.concatenate([jnp.array([t0_bar]), rev_ts_bar[::-1]])
  return (y_bar, ts_bar, *args_bar)

_odeint.defvjp(_odeint_fwd, _odeint_rev)