initial model commit
Browse files
README.md
CHANGED
@@ -28,10 +28,10 @@ from flair.data import Sentence
|
|
28 |
from flair.models import SequenceTagger
|
29 |
|
30 |
# load tagger
|
31 |
-
tagger = SequenceTagger.load("flair/
|
32 |
|
33 |
# make example sentence
|
34 |
-
sentence = Sentence("
|
35 |
|
36 |
# predict NER tags
|
37 |
tagger.predict(sentence)
|
@@ -40,23 +40,20 @@ tagger.predict(sentence)
|
|
40 |
print(sentence)
|
41 |
|
42 |
# print predicted NER spans
|
43 |
-
print('The following
|
44 |
# iterate over entities and print
|
45 |
-
for entity in sentence.get_spans('
|
46 |
print(entity)
|
47 |
|
48 |
```
|
49 |
|
50 |
This yields the following output:
|
51 |
```
|
52 |
-
Span [
|
53 |
-
Span [
|
54 |
-
Span [3]: "Berlin" [β Labels: NNP (0.9999)]
|
55 |
-
Span [4]: "." [β Labels: . (1.0)]
|
56 |
-
|
57 |
```
|
58 |
|
59 |
-
So, the word "*
|
60 |
|
61 |
|
62 |
---
|
@@ -75,7 +72,6 @@ corpus = ColumnCorpus(
|
|
75 |
"resources/tasks/srl", column_format={1: "text", 11: "frame"}
|
76 |
)
|
77 |
|
78 |
-
|
79 |
# 2. what tag do we want to predict?
|
80 |
tag_type = 'frame'
|
81 |
|
@@ -87,9 +83,9 @@ embedding_types = [
|
|
87 |
|
88 |
BytePairEmbeddings("en"),
|
89 |
|
90 |
-
FlairEmbeddings("news-forward
|
91 |
|
92 |
-
FlairEmbeddings("news-backward
|
93 |
]
|
94 |
|
95 |
# embedding stack consists of Flair and GloVe embeddings
|
|
|
28 |
from flair.models import SequenceTagger
|
29 |
|
30 |
# load tagger
|
31 |
+
tagger = SequenceTagger.load("flair/frame-english")
|
32 |
|
33 |
# make example sentence
|
34 |
+
sentence = Sentence("George returned to Berlin to return his hat.")
|
35 |
|
36 |
# predict NER tags
|
37 |
tagger.predict(sentence)
|
|
|
40 |
print(sentence)
|
41 |
|
42 |
# print predicted NER spans
|
43 |
+
print('The following frame tags are found:')
|
44 |
# iterate over entities and print
|
45 |
+
for entity in sentence.get_spans('frame'):
|
46 |
print(entity)
|
47 |
|
48 |
```
|
49 |
|
50 |
This yields the following output:
|
51 |
```
|
52 |
+
Span [2]: "returned" [β Labels: return.01 (0.9951)]
|
53 |
+
Span [6]: "return" [β Labels: return.02 (0.6361)]
|
|
|
|
|
|
|
54 |
```
|
55 |
|
56 |
+
So, the word "*returned*" is labeled as **return.01** (as in *go back somewhere*) while "*return*" is labeled as **return.02** (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*".
|
57 |
|
58 |
|
59 |
---
|
|
|
72 |
"resources/tasks/srl", column_format={1: "text", 11: "frame"}
|
73 |
)
|
74 |
|
|
|
75 |
# 2. what tag do we want to predict?
|
76 |
tag_type = 'frame'
|
77 |
|
|
|
83 |
|
84 |
BytePairEmbeddings("en"),
|
85 |
|
86 |
+
FlairEmbeddings("news-forward"),
|
87 |
|
88 |
+
FlairEmbeddings("news-backward"),
|
89 |
]
|
90 |
|
91 |
# embedding stack consists of Flair and GloVe embeddings
|