filevich's picture
Update README.md
213a909
|
raw
history blame
2.45 kB
metadata
license: mit
base_model: filevich/robertita-cased
tags:
  - generated_from_trainer
datasets:
  - fact2020
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: robertita-cased-finetuned-fact
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: fact2020
          type: fact2020
          config: fact2020
          split: validation
          args: fact2020
        metrics:
          - name: Precision
            type: precision
            value: 0.9946938891717209
          - name: Recall
            type: recall
            value: 0.988775334205079
          - name: F1
            type: f1
            value: 0.9893166033671081
          - name: Accuracy
            type: accuracy
            value: 0.988775334205079
language:
  - es
pipeline_tag: token-classification
widget:
  - text: Guatemala sufre y llora a sus fallecidos bajo un manto negro de ceniza.
  - text: La estrategia se ejecuta, no se cuenta.

robertita-cased-finetuned-fact

This model is a fine-tuned version of filevich/robertita-cased on the fact2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0407
  • Precision: 0.9947
  • Recall: 0.9888
  • F1: 0.9893
  • Accuracy: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 116 0.0554 0.9909 0.9817 0.9807 0.9817
No log 2.0 232 0.0415 0.9943 0.9879 0.9882 0.9879
No log 3.0 348 0.0407 0.9947 0.9888 0.9893 0.9888

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3