File size: 2,447 Bytes
713e900 213a909 713e900 213a909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: mit
base_model: filevich/robertita-cased
tags:
- generated_from_trainer
datasets:
- fact2020
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: robertita-cased-finetuned-fact
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: fact2020
type: fact2020
config: fact2020
split: validation
args: fact2020
metrics:
- name: Precision
type: precision
value: 0.9946938891717209
- name: Recall
type: recall
value: 0.988775334205079
- name: F1
type: f1
value: 0.9893166033671081
- name: Accuracy
type: accuracy
value: 0.988775334205079
language:
- es
pipeline_tag: token-classification
widget:
- text: "Guatemala sufre y llora a sus fallecidos bajo un manto negro de ceniza."
- text: "La estrategia se ejecuta, no se cuenta."
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robertita-cased-finetuned-fact
This model is a fine-tuned version of [filevich/robertita-cased](https://huggingface.co/filevich/robertita-cased) on the fact2020 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0407
- Precision: 0.9947
- Recall: 0.9888
- F1: 0.9893
- Accuracy: 0.9888
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 116 | 0.0554 | 0.9909 | 0.9817 | 0.9807 | 0.9817 |
| No log | 2.0 | 232 | 0.0415 | 0.9943 | 0.9879 | 0.9882 | 0.9879 |
| No log | 3.0 | 348 | 0.0407 | 0.9947 | 0.9888 | 0.9893 | 0.9888 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3 |