language:
- en
- kn
license: mit
tags:
- bilingual
- kannada
- english
metrics:
- accuracy
pipeline_tag: text-generation
model-index:
- name: Ambari-7B-base-v0.1-sharded
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 47.95
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.62
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.39
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 38.91
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.59
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fierysurf/Ambari-7B-base-v0.1-sharded
name: Open LLM Leaderboard
(This repo contains the sharded version of the original Ambari-7B model)
Ambari-7B-Base-v0.1 (sharded)
Overview
Ambari-7B-Base-v0.1 is the first bilingual English/Kannada model in the Ambari series, developed and released by Cognitivelab.in. Based on the Llama2 model by Meta, this 7B parameter model is the outcome of the pretraining stage, involving training on approximately 500 million new Kannada tokens.
Usage
To use the Ambari-7B-Base-v0.1 model, you can follow the example code below:
# Usage
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained('Cognitive-Lab/Ambari-7B-Base-v0.1')
tokenizer = LlamaTokenizer.from_pretrained('Cognitive-Lab/Ambari-7B-Base-v0.1')
prompt = "ಕನ್ನಡದ ಇತಿಹಾಸವನ್ನು ವಿವರವಾಗಿ ತಿಳಿಸಿ"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(decoded_output)
Important: The provided model serves as a foundation and is not designed for independent use. We strongly advise conducting finetuning tailored to your particular task(s) of interest before deploying it in a production environment. Feel free to customize the code according to your specific use case, ensuring that the model undergoes finetuning for optimal performance in your desired application.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 45.92 |
AI2 Reasoning Challenge (25-Shot) | 47.95 |
HellaSwag (10-Shot) | 74.62 |
MMLU (5-Shot) | 40.39 |
TruthfulQA (0-shot) | 38.91 |
Winogrande (5-shot) | 72.06 |
GSM8k (5-shot) | 1.59 |