File size: 1,944 Bytes
184224c
b1c45aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184224c
 
b1c45aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
- text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።"
- text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።"
- text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።"
- text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።"
tags:
- geezlab
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: geezswitch-tiroberta
  results: []
license: cc-by-4.0
---


# TiRoBERTa-GeezSwitch

This model is a fine-tuned version of [fgaim/tiroberta-base](https://huggingface.co/fgaim/tiroberta-base) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset.

It achieves the following results on the test set:

- F1: 0.9948
- Recall: 0.9948
- Precision: 0.9948
- Accuracy: 0.9948
- Loss: 0.0222

## Training

### Hyperparameters

The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- seed: 42

### Framework versions

- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1

### Citation

If you use this model or the GeezSwitch model in your research, please cite as follows:

```markdown
@inproceedings{fgaim2022geezswitch,
  title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages},
  author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
  booktitle={Proceedings of the 13th Language Resources and Evaluation Conference},
  year={2022}
}
```