ffgcc/InfoCSE-bert-base model
This model is based on bert-base-uncased pretrained model.
Model Recycling
Evaluation on 36 datasets using ffgcc/InfoCSE-bert-base as a base model yields average score of 74.28 in comparison to 72.20 by bert-base-uncased.
The model is ranked 1st among all tested models for the bert-base-uncased architecture as of 21/12/2022 Results:
20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.3818 | 89.3333 | 66.34 | 48.2188 | 71.315 | 71.4286 | 83.9885 | 61 | 77.1667 | 90.2891 | 83.6 | 90.872 | 71.7731 | 84.3267 | 84.0686 | 58.6015 | 75 | 91.1404 | 90.6752 | 85.8349 | 61.7329 | 92.5459 | 54.2534 | 86.9799 | 97.2 | 77.2 | 36.82 | 81.14 | 54.1077 | 65.4337 | 85.3488 | 70.4982 | 66.9279 | 50.7042 | 63.4615 | 72.2 |
For more information, see: Model Recycling