File size: 2,963 Bytes
32980f3
 
 
 
 
 
 
 
 
 
 
 
 
6d45cf5
32980f3
 
 
 
 
 
2d0cd70
6d45cf5
2d0cd70
32980f3
6d45cf5
32980f3
6d45cf5
6fa5db3
32980f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa5db3
 
 
32980f3
6fa5db3
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
datasets:
- sberquad
- adversarial_qa
language:
- en
- ru
metrics:
- rouge
pipeline_tag: text2text-generation
---

# Model Card for mTk-AdversarialQA_en-SberQuAD_ru-1B
This model is a generative in-context few-shot learner specialized in Russian. It was trained on a combination of English AdversarialQA and Russian SberQuAD datasets.

You can find detailed information on [Project Github](https://github.com/fewshot-goes-multilingual/slavic-incontext-learning) & the referenced paper.

## Model Details
### Model Description
- **Developed by:** Michal Stefanik & Marek Kadlcik, Masaryk University
- **Model type:** mt5
- **Language(s) (NLP):** en,ru
- **License:** MIT
- **Finetuned from model:** google/mt5-large
### Model Sources
- **Repository:** https://github.com/fewshot-goes-multilingual/slavic-incontext-learning
- **Paper:** https://arxiv.org/abs/2304.01922
## Uses
This model is intended to be used in a few-shot in-context learning format in the target language (Russian), or in the source language (English, see below).
It was evaluated for unseen task learning (with k=3 demonstrations) in Russian: see the referenced paper for details.
### How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("{this model path}")
tokenizer = AutoTokenizer.from_pretrained("{this model path}")
# Instead, use keywords "Вопрос", "Контекст" and "Отвечать" for Russian few-shot prompts
input_text = """
    Question: What is the customer's name? 
    Context: Origin: Barrack Obama, Customer id: Bill Moe. 
    Answer: Bill Moe, 
    Question: What is the customer's name? 
    Context: Customer id: Barrack Obama, if not deliverable, return to Bill Clinton. 
    Answer:
"""
inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**inputs)
print("Answer:")
print(tokenizer.decode(outputs))
```
## Training Details
Training this model can be reproduced by running `pip install -r requirements.txt && python train_mt5_qa_en_AQA+ru_info.py
`. 
See the referenced script for hyperparameters and other training configurations.
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
If you use our models or other resources in your research, please cite our work as follows.


**BibTeX:**

```bib
@inproceedings{stefanik2023resources,
               author = {\v{S}tef\'{a}nik, Michal and Kadlčík, Marek and Gramacki, Piotr and Sojka, Petr},
               title = {Resources and Few-shot Learners for In-context Learning in Slavic Languages},
               booktitle = {Proceedings of the 9th Workshop on Slavic Natural Language Processing},
               publisher = {ACL},
               numpages = {9},
               url = {https://arxiv.org/abs/2304.01922},
}
```