File size: 12,332 Bytes
82b70d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import threading
import numpy as np
import torch
from sklearn.metrics import roc_auc_score
import cv2
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score, recall_score, precision_score, jaccard_score
import numpy as np
import torch.nn.functional as F
__all__ = ['SegmentationMetric', 'SegmentationMetricTPFNFP', 'ROCMetric']
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_pixacc_miou(total_correct, total_label, total_inter, total_union):
pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
mIoU = IoU.mean()
return pixAcc, mIoU
def get_miou_prec_recall_fscore(total_tp, total_fp, total_fn):
miou = 1.0 * total_tp / (np.spacing(1) + total_tp + total_fp + total_fn)
prec = 1.0 * total_tp / (np.spacing(1) + total_tp + total_fp)
recall = 1.0 * total_tp / (np.spacing(1) + total_tp + total_fn)
fscore = 2.0 * prec * recall / (np.spacing(1) + prec + recall)
return miou, prec, recall, fscore
class SegmentationMetric(object):
"""Computes pixAcc and mIoU metric scroes
"""
def __init__(self, nclass):
self.nclass = nclass
self.lock = threading.Lock()
self.reset()
def update(self, labels, preds):
def evaluate_worker(self, label, pred):
correct, labeled = batch_pix_accuracy(
pred, label)
inter, union = batch_intersection_union(
pred, label, self.nclass)
with self.lock:
self.total_correct += correct
self.total_label += labeled
self.total_inter += inter
self.total_union += union
return
if isinstance(preds, torch.Tensor):
evaluate_worker(self, labels, preds)
elif isinstance(preds, (list, tuple)):
threads = [threading.Thread(target=evaluate_worker,
args=(self, label, pred),
)
for (label, pred) in zip(labels, preds)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
raise NotImplemented
def get_all(self):
return self.total_correct, self.total_label, self.total_inter, self.total_union
def get(self):
return get_pixacc_miou(self.total_correct, self.total_label, self.total_inter, self.total_union)
def reset(self):
self.total_inter = 0
self.total_union = 0
self.total_correct = 0
self.total_label = 0
return
class SegmentationMetricTPFNFP(object):
"""Computes pixAcc and mIoU metric scroes
"""
def __init__(self, nclass):
self.nclass = nclass
self.lock = threading.Lock()
self.reset()
def update(self, labels, preds):
def evaluate_worker(self, label, pred):
tp, fp, fn = batch_tp_fp_fn(pred, label, self.nclass)
with self.lock:
self.total_tp += tp
self.total_fp += fp
self.total_fn += fn
return
if isinstance(preds, torch.Tensor):
evaluate_worker(self, labels, preds)
elif isinstance(preds, (list, tuple)):
threads = [threading.Thread(target=evaluate_worker,
args=(self, label, pred),
)
for (label, pred) in zip(labels, preds)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
raise NotImplemented
def get_all(self):
return self.total_tp, self.total_fp, self.total_fn
def get(self):
return get_miou_prec_recall_fscore(self.total_tp, self.total_fp, self.total_fn)
def reset(self):
self.total_tp = 0
self.total_fp = 0
self.total_fn = 0
return
def batch_pix_accuracy(output, target):
"""Batch Pixel Accuracy
Args:
predict: input 4D tensor
target: label 3D tensor
"""
output = output.detach().numpy()
target = target.detach().numpy()
predict = (output > 0).astype('int64') # P
pixel_labeled = np.sum(target > 0) # T
pixel_correct = np.sum((predict == target) * (target > 0)) # TP
assert pixel_correct <= pixel_labeled
return pixel_correct, pixel_labeled
def batch_intersection_union(output, target, nclass):
"""Batch Intersection of Union
Args:
predict: input 4D tensor
target: label 3D tensor
nclass: number of categories (int)
"""
mini = 1
maxi = nclass
nbins = nclass
predict = (output.detach().numpy() > 0).astype('int64') # P
target = target.numpy().astype('int64') # T
intersection = predict * (predict == target) # TP
# areas of intersection and union
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
area_union = area_pred + area_lab - area_inter
assert (area_inter <= area_union).all()
return area_inter, area_union
def batch_tp_fp_fn(output, target, nclass):
"""Batch Intersection of Union
Args:
predict: input 4D tensor
target: label 3D tensor
nclass: number of categories (int)
"""
mini = 1
maxi = nclass
nbins = nclass
predict = (output.detach().numpy() > 0).astype('int64') # P
target = target.numpy().astype('int64') # T
intersection = predict * (predict == target) # TP
# areas of intersection and union
area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
# areas of TN FP FN
area_tp = area_inter[0]
area_fp = area_pred[0] - area_inter[0]
area_fn = area_lab[0] - area_inter[0]
# area_union = area_pred + area_lab - area_inter
assert area_tp <= (area_tp + area_fn + area_fp)
return area_tp, area_fp, area_fn
# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
def pixel_accuracy(im_pred, im_lab):
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
# We should not penalize detections in unlabeled portions of the image.
pixel_labeled = np.sum(im_lab > 0)
pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
# pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
return pixel_correct, pixel_labeled
def intersection_and_union(im_pred, im_lab, num_class):
im_pred = np.asarray(im_pred)
im_lab = np.asarray(im_lab)
# Remove classes from unlabeled pixels in gt image.
im_pred = im_pred * (im_lab > 0)
# Compute area intersection:
intersection = im_pred * (im_pred == im_lab)
area_inter, _ = np.histogram(intersection, bins=num_class - 1,
range=(1, num_class - 1))
# Compute area union:
area_pred, _ = np.histogram(im_pred, bins=num_class - 1,
range=(1, num_class - 1))
area_lab, _ = np.histogram(im_lab, bins=num_class - 1,
range=(1, num_class - 1))
area_union = area_pred + area_lab - area_inter
return area_inter, area_union
class ROCMetric():
def __init__(self, nclass, bins):
self.nclass = nclass
self.bins = bins
self.reset()
def update(self, preds, labels):
# This is to compute fpr and tpr
for iBin in range(self.bins+1):
score_thresh = (iBin + 0.0) / self.bins
i_tp, i_pos, i_fp, i_neg = cal_tp_pos_fp_neg(preds, labels, self.nclass, score_thresh)
self.tp_arr[iBin] += i_tp
self.pos_arr[iBin] += i_pos
self.fp_arr[iBin] += i_fp
self.neg_arr[iBin] += i_neg
# This is to compute pd and fa
score_thresh = 0.5
i_tp, i_pos, i_fp, i_neg = cal_tp_pos_fp_neg(preds, labels, self.nclass, score_thresh)
self.tp += i_tp
self.pos += i_pos
self.fp += i_fp
self.neg += i_neg
def get(self):
tp_rates = self.tp_arr / (self.pos_arr + 0.001)
fp_rates = self.fp_arr / (self.neg_arr + 0.001)
pd = self.tp / (self.pos)
fa = self.fp / (self.neg)
return tp_rates, fp_rates, pd, fa
def reset(self):
self.tp_arr = np.zeros(self.bins + 1)
self.pos_arr = np.zeros(self.bins + 1)
self.fp_arr = np.zeros(self.bins + 1)
self.neg_arr = np.zeros(self.bins + 1)
self.tp = 0
self.fp = 0
self.pos = 0
self.neg = 0
def cal_tp_pos_fp_neg(output, target, nclass, score_thresh):
mini = 1
maxi = 1 # nclass
nbins = 1 # nclass
predict = (torch.sigmoid(output).detach().numpy() > score_thresh).astype('int64') # P
target = target.detach().numpy().astype('int64') # T
intersection = predict * (predict == target) # TP
tp = intersection.sum()
fp = (predict * (predict != target)).sum() # FP
tn = ((1 - predict) * (predict == target)).sum() # TN
fn = ((predict != target) * (1 - predict)).sum() # FN
pos = tp + fn
neg = fp + tn
return tp, pos, fp, neg
class AverageMeter:
def __init__(self):
self.reset()
def reset(self):
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.sum += val * n
self.count += n
@property
def average(self):
if self.count == 0:
return 0.0
return self.sum / self.count
def get_metrics(predict, target, threshold=0.5):
predict_b = (predict > threshold).astype(int)
target = target.astype(int)
# Flatten the arrays to ensure they are 1-dimensional
predict_flat = predict.flatten()
target_flat = target.flatten()
# Calculate metrics
auc = float('nan') # Initialize auc with NaN
unique_classes = np.unique(target_flat)
# print(f"Unique classes in target: {unique_classes}")
# Check for number of classes in the target
if len(unique_classes) > 1:
auc = roc_auc_score(target_flat, predict_flat)
elif len(unique_classes) == 1 and unique_classes[0] == 1:
# Special case where only the positive class is present in the ground truth
auc = 1.0
f1 = f1_score(target_flat, predict_b.flatten(), zero_division=1)
acc = accuracy_score(target_flat, predict_b.flatten())
sen = recall_score(target_flat, predict_b.flatten(), zero_division=1)
spe = precision_score(target_flat, predict_b.flatten(), zero_division=1)
pre = precision_score(target_flat, predict_b.flatten(), zero_division=1)
iou = jaccard_score(target_flat, predict_b.flatten(), zero_division=1)
return {
'AUC': auc,
'F1': f1,
'Acc': acc,
'Sen': sen,
'Spe': spe,
'Pre': pre,
'IOU': iou
}
def count_connect_component(predict, target, threshold=None, connectivity=8):
if threshold != None:
predict = torch.sigmoid(predict).cpu().detach().numpy()
predict = np.where(predict >= threshold, 1, 0)
if torch.is_tensor(target):
target = target.cpu().detach().numpy()
pre_n, _, _, _ = cv2.connectedComponentsWithStats(np.asarray(
predict, dtype=np.uint8)*255, connectivity=connectivity)
gt_n, _, _, _ = cv2.connectedComponentsWithStats(np.asarray(
target, dtype=np.uint8)*255, connectivity=connectivity)
return pre_n/gt_n
|