felixshier's picture
Upload TFDistilBertForSequenceClassification
9b25b76
|
raw
history blame
2.31 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: oc-01-distilbert-finetuned
    results: []

oc-01-distilbert-finetuned

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0061
  • Validation Loss: 0.4666
  • Train Recall: 0.9070
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Recall Epoch
0.3386 0.2557 0.8915 0
0.1989 0.2661 0.9283 1
0.1097 0.2809 0.9244 2
0.0716 0.3101 0.9244 3
0.0310 0.4023 0.8721 4
0.0288 0.4877 0.9535 5
0.0155 0.3834 0.9109 6
0.0105 0.4263 0.9012 7
0.0095 0.4746 0.9070 8
0.0061 0.4666 0.9070 9

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.13.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3