File size: 24,554 Bytes
f1298e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoConfig
from .configuration_wemm import WeMMConfig
from .vision_model import Idefics2VisionTransformer
from .connector import Idefics2Connector
from .image_processor import Idefics2ImageProcessor
from .modeling_downsampler import DownsamplerModel
from .modeling_projector import ProjectorModel
from .modeling_internlm2 import InternLM2ForCausalLM
from .tokenization_internlm2 import InternLM2Tokenizer
from peft import PeftModel
from peft import PeftConfig
import os
from PIL import Image
import numpy as np
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
IGNORE_INDEX = -100
from transformers import StoppingCriteria
from transformers import PreTrainedTokenizerFast, StoppingCriteriaList
import torch.nn.functional as F
class StopWordStoppingCriteria(StoppingCriteria):
    """StopWord stopping criteria."""
    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)
    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace('\r', '').replace('\n', '')
        return cur_text[-self.length:] == self.stop_word
def get_stop_criteria(
    tokenizer,
    stop_words=[],
):
    stop_criteria = StoppingCriteriaList()
    for word in stop_words:
        stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
    return stop_criteria
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0
    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H, W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H, W, D/2)
    emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
    return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)
    pos = np.squeeze(pos)  # (1, H, W) -> (H, W)
    out = np.einsum('hw,d->hwd', pos, omega)  # (H, W, D/2), outer product
    emb_sin = np.sin(out) # (H, W, D/2)
    emb_cos = np.cos(out) # (H, W, D/2)
    emb = np.concatenate([emb_sin, emb_cos], axis=-1)  # (H, W, D)
    return emb
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size_h, dtype=np.float32)
    grid_w = np.arange(grid_size_w, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)
    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed
def recover_navit_subimages_with_pos_emb(
        sub_image_hidden_states,
        attention_mask,
        num_sub_images,
        visual_embedding_group,
        pos_hidden_size,
        thumbnail_only=False):
    _slice = int(np.sqrt(num_sub_images))
    N, L, D = sub_image_hidden_states.shape
    _, H, W = attention_mask.shape
    if thumbnail_only is True:
        num_sub_images += 1
    sub_image_hidden_states = sub_image_hidden_states.reshape(-1, num_sub_images, H, W, D)
    attention_mask = attention_mask.reshape(-1, num_sub_images, H, W)
    if thumbnail_only is True:
        sub_image_hidden_states = sub_image_hidden_states[:, -1:, :, :, :]
        attention_mask = attention_mask[:, -1:, :, :]
        _slice = 1
    def _infer_ori_image_patch_shape(sub_image_attention_mask):
        ind_h, ind_w = torch.where(sub_image_attention_mask > 0)
        return torch.max(ind_h) + 1, torch.max(ind_w) + 1
    def _pad_to_same(image_hidden):
        _dtype = image_hidden.dtype
        visual_downsample_stride = int(np.sqrt(visual_embedding_group))
        full_h, full_w, _ = image_hidden.shape
        target_h, target_w = H * _slice, W * _slice
        # ensure all contents are included during downsampling
        to_pad_h = (target_h - full_h) + (
                    visual_downsample_stride - target_h % visual_downsample_stride) % visual_downsample_stride
        to_pad_w = (target_w - full_w) + (
                    visual_downsample_stride - target_w % visual_downsample_stride) % visual_downsample_stride
        # (H,W,D) -> (1,D,H,W) to support replicate padding
        image_hidden = image_hidden.permute(2, 0, 1).unsqueeze(0)
        pad_size = (0, to_pad_w, 0, to_pad_h)
        # (1,D,H,W) -> (H,W,D)
        image_hidden = F.pad(image_hidden.to(torch.float32), pad_size, mode='replicate').squeeze(0).permute(1, 2, 0)
        return image_hidden.to(_dtype)
    image_hidden_states = list()
    valid_image_token = list()
    image_2d_pos = list()
    for batch_id in range(len(sub_image_hidden_states)):
        ori_h, ori_w = _infer_ori_image_patch_shape(attention_mask[batch_id][0])
        full_h, full_w = ori_h * _slice, ori_w * _slice
        # (S,H,W,D) -> (S_h,S_w,H,W,D) -> (S_h,H,S_w,W,D) -> (S_h*H,S_w*W,D)
        this_image_hidden = sub_image_hidden_states[batch_id][:, 0:ori_h, 0:ori_w, :] \
            .view(_slice, _slice, ori_h, ori_w, D).permute(0, 2, 1, 3, 4).contiguous().view(full_h, full_w, D)
        pos_emb = get_2d_sincos_pos_embed(pos_hidden_size, grid_size_h=full_h,
                                          grid_size_w=full_w)  # (H, W, D)
        pos_emb = torch.tensor(pos_emb, dtype=this_image_hidden.dtype, device=this_image_hidden.device)
        image_hidden_states.append(_pad_to_same(this_image_hidden))
        image_2d_pos.append(_pad_to_same(pos_emb))
        valid_image_token.append([full_h, full_w])
    image_hidden_states = torch.stack(image_hidden_states)
    image_2d_pos = torch.stack(image_2d_pos)
    valid_image_token = torch.tensor(valid_image_token, dtype=torch.int64)
    return image_hidden_states, image_2d_pos, valid_image_token
def visiual_token_downsample(
        visual_downsampler,
        image_hidden_states,
        valid_image_token,
        visual_embedding_group,
        image_2d_pos):
    if image_2d_pos is not None:
        image_hidden_states = image_hidden_states + image_2d_pos
    image_hidden_states = visual_downsampler(image_hidden_states)
    valid_image_token = torch.ceil(valid_image_token / np.sqrt(visual_embedding_group)).to(torch.int64)
    return image_hidden_states, valid_image_token
def merge_native_qformer(
        clip_embeddings_native_patch,
        valid_image_token_shape,
        clip_embeddings_qformer,
        visual_source_spliter,
        num_sub_images):
    assert clip_embeddings_native_patch.size(0) == valid_image_token_shape.size(0) == clip_embeddings_qformer.size(0)
    def add_split_token_for_qformer_token(qformer_emb):
        # + 1 for thumbnail
        len_per_token = int(qformer_emb.size(0) // (num_sub_images + 1))
        qformer_emb_with_spliter = list()
        for i in range(num_sub_images + 1):
            qformer_emb_with_spliter.append(
                visual_source_spliter(torch.tensor([2 * i]).to(visual_source_spliter.weight.device))
            )
            qformer_emb_with_spliter.append(qformer_emb[i * len_per_token:(i + 1) * len_per_token])
            qformer_emb_with_spliter.append(
                visual_source_spliter(torch.tensor([2 * i + 1]).to(visual_source_spliter.weight.device))
            )
        return torch.cat(qformer_emb_with_spliter, dim=0)
    merged_visual_embeddings = list()
    for batch_id in range(clip_embeddings_native_patch.size(0)):
        h, w = valid_image_token_shape[batch_id]
        native_patch_emb = clip_embeddings_native_patch[batch_id][:h, :w, :].reshape(h*w, -1)
        qformer_emb = clip_embeddings_qformer[batch_id]
        qformer_emb = add_split_token_for_qformer_token(qformer_emb)
        merged_visual_embeddings.append(
            torch.cat(
                [visual_source_spliter(torch.tensor([10]).to(visual_source_spliter.weight.device)),
                 native_patch_emb,
                 visual_source_spliter(torch.tensor([11]).to(visual_source_spliter.weight.device)),
                 qformer_emb],
                dim=0))
    return merged_visual_embeddings
class WemmForConditionalGeneration(PreTrainedModel):
    config_class = WeMMConfig
    def __init__(self, config: WeMMConfig):
        super().__init__(config)
        self.vision_tower = Idefics2VisionTransformer(config.vision_config)
        self.image_processor = Idefics2ImageProcessor(config.image_processor)
        self.connector = Idefics2Connector(config.connector_config)
        self.projector = ProjectorModel(config.projector_config)
        self.language_model = InternLM2ForCausalLM(config.text_config)
        self.tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-7b", trust_remote_code=True, encode_special_tokens=True)
        self.downsampler = DownsamplerModel(config.downsampler_config)
        self.visual_source_spliter_emb = torch.nn.Embedding(**config.spliter_emb_config)
        self.gen_config = GenerationConfig(
            max_new_tokens=512,
            do_sample=False,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.pad_token_id
            if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id,
        )
        self.do_image_splitting = config.do_image_splitting
        self.stop_criteria = get_stop_criteria(
            tokenizer=self.tokenizer, stop_words=['<|im_end|>'])
        self.config = config
    def mm_generate(self, image_path, prompt, gen_config=None):
        prompt = "<image>" + '\n' + prompt
        prompt = f"<|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
        image = Image.open(image_path).convert('RGB')
        navit980_images = self.image_processor([[image]], return_tensors="pt", do_image_splitting=self.do_image_splitting)
        batch_size_navit = navit980_images['pixel_values'].shape[0]
        navit_pixel_values = navit980_images['navit_pixel_values'].cuda()
        navit_patch_attention_mask = navit980_images["pixel_attention_mask"].cuda()
        clip_visual_outputs = self.vision_tower(pixel_values=navit_pixel_values,patch_attention_mask=navit_patch_attention_mask,).last_hidden_state
        super_image_hidden_states, image_2d_pos, valid_image_token_shape = \
            recover_navit_subimages_with_pos_emb(
                clip_visual_outputs, navit_patch_attention_mask, num_sub_images=4,
                visual_embedding_group=1,
                pos_hidden_size=4096,
                thumbnail_only=True
            )
        clip_embeddings_native_patch, valid_image_token_shape = visiual_token_downsample(
            self.downsampler,
            super_image_hidden_states, valid_image_token_shape,
            visual_embedding_group=1, image_2d_pos=None
        )
        clip_embeddings_qformer = self.connector(clip_visual_outputs, attention_mask=navit_patch_attention_mask.view(navit_pixel_values.size(0), -1))
        hidden_size = clip_embeddings_qformer.shape[-1]
        clip_embeddings_qformer = clip_embeddings_qformer.view(batch_size_navit, -1, hidden_size)
        clip_embeddings_qformer = self.projector(clip_embeddings_qformer)
        merged_visual_embeddings = \
            merge_native_qformer(
                clip_embeddings_native_patch,
                valid_image_token_shape,
                clip_embeddings_qformer,
                visual_source_spliter=self.visual_source_spliter_emb,
                num_sub_images=4
                )
        chunk_encode = []
        for idx, chunk in enumerate(prompt.split(DEFAULT_IMAGE_TOKEN)):
            if idx == 0:
                cur_encode = self.tokenizer.encode(chunk)
            else:
                cur_encode = self.tokenizer.encode(chunk, add_special_tokens=False)
            chunk_encode.append(cur_encode)
        assert len(chunk_encode) == 2
        ids = []
        for idx, cur_chunk_encode in enumerate(chunk_encode):
            ids.extend(cur_chunk_encode)
            if idx != len(chunk_encode) - 1:
                ids.append(IMAGE_TOKEN_INDEX)
        ids = torch.tensor(ids).cuda().unsqueeze(0)
        pixel_values = None
        mm_inputs = self.prepare_inputs_labels_for_multimodal(
            llm=self.language_model, input_ids=ids, pixel_values=pixel_values, clip_embeddings=merged_visual_embeddings)
        generate_output = self.language_model.generate(
            **mm_inputs,
            generation_config=gen_config if gen_config is not None else self.gen_config,
            streamer=None,
            bos_token_id=self.tokenizer.bos_token_id,
            stopping_criteria=self.stop_criteria
            )
        predict = self.tokenizer.decode(
            generate_output[0], skip_special_tokens=True).strip()
        return predict
    def get_valid_visual_embedding(self, embedding, valid_token_shape):
        if valid_token_shape is None:
            return embedding
        h, w = valid_token_shape
        return embedding[:h, :w, :].reshape(h*w, -1)
    # Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99  # noqa: E501
    def prepare_inputs_labels_for_multimodal(
            self,
            llm: PreTrainedModel,
            input_ids: torch.LongTensor = None,
            position_ids: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            pixel_values: Optional[torch.FloatTensor] = None,
            clip_embeddings: Optional[torch.FloatTensor] = None,
            hard_coded_max_len: Optional[int] = None,
            **kwargs):
        if pixel_values is None and clip_embeddings is None:
            return {
                'input_ids': input_ids,
                'position_ids': position_ids,
                'attention_mask': attention_mask,
                'past_key_values': past_key_values,
                'inputs_embeds': None,
                'labels': labels
            }
        valid_image_token_shape = kwargs.get('valid_image_token_shape', None)
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(
                0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)
        # remove the padding using attention_mask -- TODO: double check
        input_ids = [
            cur_input_ids[cur_attention_mask]
            for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        labels = [
            cur_labels[cur_attention_mask]
            for cur_labels, cur_attention_mask in zip(labels, attention_mask)
        ]
        new_inputs_embeds = []
        new_labels = []
        new_img_masks = []
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            if num_images == 0:
                cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
                cur_clip_emb = self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) if clip_embeddings is not None else None
                cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
                if cur_clip_emb is not None and cur_pixel_values is not None:
                    cur_inputs_embeds = torch.cat(
                        [cur_inputs_embeds_1, cur_pixel_values[0:0], cur_clip_emb[0:0]], dim=0)
                elif cur_pixel_values is not None:
                    cur_inputs_embeds = torch.cat(
                        [cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
                elif cur_clip_emb is not None:
                    cur_inputs_embeds = torch.cat(
                        [cur_inputs_embeds_1, cur_clip_emb[0:0]], dim=0)
                else:
                    raise ValueError
                new_inputs_embeds.append(cur_inputs_embeds)
                new_labels.append(labels[batch_idx])
                new_img_masks.append(torch.zeros(
                    cur_inputs_embeds.shape[0], device=cur_inputs_embeds.device).bool())
                cur_image_idx += 1
                continue
            image_token_indices = [-1] + torch.where(
                cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
                    cur_input_ids.shape[0]
                ]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
                                                        1:image_token_indices[i +
                                                                            1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] +
                                                1:image_token_indices[i + 1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_inputs_embeds = llm.get_input_embeddings()(
                torch.cat(cur_input_ids_noim))
            cur_inputs_embeds_no_im = torch.split(
                cur_inputs_embeds, split_sizes, dim=0)
            cur_new_inputs_embeds = []
            cur_new_labels = []
            cur_img_masks = []
            for i in range(num_images + 1):
                cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                cur_img_masks.append(torch.zeros(
                    cur_inputs_embeds_no_im[i].shape[0], device=cur_inputs_embeds_no_im[i].device).bool())
                if i < num_images:
                    cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
                    if(valid_image_token_shape is not None):
                        cur_clip_emb = \
                            self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) \
                                if clip_embeddings is not None else None
                    else:
                        cur_clip_emb = clip_embeddings[cur_image_idx] if clip_embeddings is not None else None
                    cur_image_idx += 1
                    # discrete token embeddings
                    if cur_pixel_values is not None:
                        cur_new_inputs_embeds.append(cur_pixel_values)
                        cur_img_masks.append(torch.ones(
                            cur_pixel_values.shape[0], device=cur_pixel_values.device).bool())
                        cur_new_labels.append(
                            torch.full((cur_pixel_values.shape[0], ),
                                    IGNORE_INDEX,
                                    device=cur_labels.device,
                                    dtype=cur_labels.dtype))
                    # clip embeddings
                    if cur_clip_emb is not None:
                        cur_new_inputs_embeds.append(cur_clip_emb)
                        cur_img_masks.append(torch.zeros(
                            cur_clip_emb.shape[0], device=cur_clip_emb.device).bool())
                        cur_new_labels.append(
                            torch.full((cur_clip_emb.shape[0],),
                                    IGNORE_INDEX,
                                    device=cur_labels.device,
                                    dtype=cur_labels.dtype))
            cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
            cur_new_labels = torch.cat(cur_new_labels)
            cur_img_masks = torch.cat(cur_img_masks)
            new_inputs_embeds.append(cur_new_inputs_embeds)
            new_labels.append(cur_new_labels)
            new_img_masks.append(cur_img_masks)
        # Combine them
        max_len = max(x.shape[0] for x in new_inputs_embeds)
        if hard_coded_max_len is not None:
            max_len = min(max_len, hard_coded_max_len)
        batch_size = len(new_inputs_embeds)
        new_inputs_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len),
                                    IGNORE_INDEX,
                                    dtype=new_labels[0].dtype,
                                    device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len),
                                    dtype=attention_mask.dtype,
                                    device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len),
                                dtype=position_ids.dtype,
                                device=position_ids.device)
        new_img_masks_padded = torch.zeros((batch_size, max_len), device=new_img_masks[0].device).bool()
        for i, (cur_new_embed,
                cur_new_labels, cur_new_img_masks) in enumerate(zip(new_inputs_embeds, new_labels, new_img_masks)):
            cur_new_embed = cur_new_embed[:max_len]
            cur_new_labels = cur_new_labels[:max_len]
            cur_new_img_masks = cur_new_img_masks[:max_len]
            cur_len = cur_new_embed.shape[0]
            new_inputs_embeds_padded.append(
                torch.cat((cur_new_embed,
                        torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
                                    dtype=cur_new_embed.dtype,
                                    device=cur_new_embed.device)),
                        dim=0))
            if cur_len > 0:
                new_labels_padded[i, :cur_len] = cur_new_labels
                attention_mask[i, :cur_len] = True
                position_ids[i, :cur_len] = torch.arange(
                    0,
                    cur_len,
                    dtype=position_ids.dtype,
                    device=position_ids.device)
                new_img_masks_padded[i, :cur_len] = cur_new_img_masks
        new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded
        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
        if _position_ids is None:
            position_ids = None
        prepared_data = {
            'input_ids': None,
            'position_ids': position_ids,
            'attention_mask': attention_mask,
            'past_key_values': past_key_values,
            'inputs_embeds': new_inputs_embeds,
            'labels': new_labels,
        }
        if pixel_values is not None:
            prepared_data.update({'im_mask': new_img_masks_padded})
        return prepared_data
AutoConfig.register("wemm_hf", WeMMConfig)
AutoModel.register(WeMMConfig, WemmForConditionalGeneration)