File size: 24,554 Bytes
f1298e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoConfig
from .configuration_wemm import WeMMConfig
from .vision_model import Idefics2VisionTransformer
from .connector import Idefics2Connector
from .image_processor import Idefics2ImageProcessor
from .modeling_downsampler import DownsamplerModel
from .modeling_projector import ProjectorModel
from .modeling_internlm2 import InternLM2ForCausalLM
from .tokenization_internlm2 import InternLM2Tokenizer
from peft import PeftModel
from peft import PeftConfig
import os
from PIL import Image
import numpy as np
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
IGNORE_INDEX = -100
from transformers import StoppingCriteria
from transformers import PreTrainedTokenizerFast, StoppingCriteriaList
import torch.nn.functional as F
class StopWordStoppingCriteria(StoppingCriteria):
"""StopWord stopping criteria."""
def __init__(self, tokenizer, stop_word):
self.tokenizer = tokenizer
self.stop_word = stop_word
self.length = len(self.stop_word)
def __call__(self, input_ids, *args, **kwargs) -> bool:
cur_text = self.tokenizer.decode(input_ids[0])
cur_text = cur_text.replace('\r', '').replace('\n', '')
return cur_text[-self.length:] == self.stop_word
def get_stop_criteria(
tokenizer,
stop_words=[],
):
stop_criteria = StoppingCriteriaList()
for word in stop_words:
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
return stop_criteria
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H, W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H, W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = np.squeeze(pos) # (1, H, W) -> (H, W)
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
emb_sin = np.sin(out) # (H, W, D/2)
emb_cos = np.cos(out) # (H, W, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
return emb
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size_h, dtype=np.float32)
grid_w = np.arange(grid_size_w, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def recover_navit_subimages_with_pos_emb(
sub_image_hidden_states,
attention_mask,
num_sub_images,
visual_embedding_group,
pos_hidden_size,
thumbnail_only=False):
_slice = int(np.sqrt(num_sub_images))
N, L, D = sub_image_hidden_states.shape
_, H, W = attention_mask.shape
if thumbnail_only is True:
num_sub_images += 1
sub_image_hidden_states = sub_image_hidden_states.reshape(-1, num_sub_images, H, W, D)
attention_mask = attention_mask.reshape(-1, num_sub_images, H, W)
if thumbnail_only is True:
sub_image_hidden_states = sub_image_hidden_states[:, -1:, :, :, :]
attention_mask = attention_mask[:, -1:, :, :]
_slice = 1
def _infer_ori_image_patch_shape(sub_image_attention_mask):
ind_h, ind_w = torch.where(sub_image_attention_mask > 0)
return torch.max(ind_h) + 1, torch.max(ind_w) + 1
def _pad_to_same(image_hidden):
_dtype = image_hidden.dtype
visual_downsample_stride = int(np.sqrt(visual_embedding_group))
full_h, full_w, _ = image_hidden.shape
target_h, target_w = H * _slice, W * _slice
# ensure all contents are included during downsampling
to_pad_h = (target_h - full_h) + (
visual_downsample_stride - target_h % visual_downsample_stride) % visual_downsample_stride
to_pad_w = (target_w - full_w) + (
visual_downsample_stride - target_w % visual_downsample_stride) % visual_downsample_stride
# (H,W,D) -> (1,D,H,W) to support replicate padding
image_hidden = image_hidden.permute(2, 0, 1).unsqueeze(0)
pad_size = (0, to_pad_w, 0, to_pad_h)
# (1,D,H,W) -> (H,W,D)
image_hidden = F.pad(image_hidden.to(torch.float32), pad_size, mode='replicate').squeeze(0).permute(1, 2, 0)
return image_hidden.to(_dtype)
image_hidden_states = list()
valid_image_token = list()
image_2d_pos = list()
for batch_id in range(len(sub_image_hidden_states)):
ori_h, ori_w = _infer_ori_image_patch_shape(attention_mask[batch_id][0])
full_h, full_w = ori_h * _slice, ori_w * _slice
# (S,H,W,D) -> (S_h,S_w,H,W,D) -> (S_h,H,S_w,W,D) -> (S_h*H,S_w*W,D)
this_image_hidden = sub_image_hidden_states[batch_id][:, 0:ori_h, 0:ori_w, :] \
.view(_slice, _slice, ori_h, ori_w, D).permute(0, 2, 1, 3, 4).contiguous().view(full_h, full_w, D)
pos_emb = get_2d_sincos_pos_embed(pos_hidden_size, grid_size_h=full_h,
grid_size_w=full_w) # (H, W, D)
pos_emb = torch.tensor(pos_emb, dtype=this_image_hidden.dtype, device=this_image_hidden.device)
image_hidden_states.append(_pad_to_same(this_image_hidden))
image_2d_pos.append(_pad_to_same(pos_emb))
valid_image_token.append([full_h, full_w])
image_hidden_states = torch.stack(image_hidden_states)
image_2d_pos = torch.stack(image_2d_pos)
valid_image_token = torch.tensor(valid_image_token, dtype=torch.int64)
return image_hidden_states, image_2d_pos, valid_image_token
def visiual_token_downsample(
visual_downsampler,
image_hidden_states,
valid_image_token,
visual_embedding_group,
image_2d_pos):
if image_2d_pos is not None:
image_hidden_states = image_hidden_states + image_2d_pos
image_hidden_states = visual_downsampler(image_hidden_states)
valid_image_token = torch.ceil(valid_image_token / np.sqrt(visual_embedding_group)).to(torch.int64)
return image_hidden_states, valid_image_token
def merge_native_qformer(
clip_embeddings_native_patch,
valid_image_token_shape,
clip_embeddings_qformer,
visual_source_spliter,
num_sub_images):
assert clip_embeddings_native_patch.size(0) == valid_image_token_shape.size(0) == clip_embeddings_qformer.size(0)
def add_split_token_for_qformer_token(qformer_emb):
# + 1 for thumbnail
len_per_token = int(qformer_emb.size(0) // (num_sub_images + 1))
qformer_emb_with_spliter = list()
for i in range(num_sub_images + 1):
qformer_emb_with_spliter.append(
visual_source_spliter(torch.tensor([2 * i]).to(visual_source_spliter.weight.device))
)
qformer_emb_with_spliter.append(qformer_emb[i * len_per_token:(i + 1) * len_per_token])
qformer_emb_with_spliter.append(
visual_source_spliter(torch.tensor([2 * i + 1]).to(visual_source_spliter.weight.device))
)
return torch.cat(qformer_emb_with_spliter, dim=0)
merged_visual_embeddings = list()
for batch_id in range(clip_embeddings_native_patch.size(0)):
h, w = valid_image_token_shape[batch_id]
native_patch_emb = clip_embeddings_native_patch[batch_id][:h, :w, :].reshape(h*w, -1)
qformer_emb = clip_embeddings_qformer[batch_id]
qformer_emb = add_split_token_for_qformer_token(qformer_emb)
merged_visual_embeddings.append(
torch.cat(
[visual_source_spliter(torch.tensor([10]).to(visual_source_spliter.weight.device)),
native_patch_emb,
visual_source_spliter(torch.tensor([11]).to(visual_source_spliter.weight.device)),
qformer_emb],
dim=0))
return merged_visual_embeddings
class WemmForConditionalGeneration(PreTrainedModel):
config_class = WeMMConfig
def __init__(self, config: WeMMConfig):
super().__init__(config)
self.vision_tower = Idefics2VisionTransformer(config.vision_config)
self.image_processor = Idefics2ImageProcessor(config.image_processor)
self.connector = Idefics2Connector(config.connector_config)
self.projector = ProjectorModel(config.projector_config)
self.language_model = InternLM2ForCausalLM(config.text_config)
self.tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-7b", trust_remote_code=True, encode_special_tokens=True)
self.downsampler = DownsamplerModel(config.downsampler_config)
self.visual_source_spliter_emb = torch.nn.Embedding(**config.spliter_emb_config)
self.gen_config = GenerationConfig(
max_new_tokens=512,
do_sample=False,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id,
)
self.do_image_splitting = config.do_image_splitting
self.stop_criteria = get_stop_criteria(
tokenizer=self.tokenizer, stop_words=['<|im_end|>'])
self.config = config
def mm_generate(self, image_path, prompt, gen_config=None):
prompt = "<image>" + '\n' + prompt
prompt = f"<|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
image = Image.open(image_path).convert('RGB')
navit980_images = self.image_processor([[image]], return_tensors="pt", do_image_splitting=self.do_image_splitting)
batch_size_navit = navit980_images['pixel_values'].shape[0]
navit_pixel_values = navit980_images['navit_pixel_values'].cuda()
navit_patch_attention_mask = navit980_images["pixel_attention_mask"].cuda()
clip_visual_outputs = self.vision_tower(pixel_values=navit_pixel_values,patch_attention_mask=navit_patch_attention_mask,).last_hidden_state
super_image_hidden_states, image_2d_pos, valid_image_token_shape = \
recover_navit_subimages_with_pos_emb(
clip_visual_outputs, navit_patch_attention_mask, num_sub_images=4,
visual_embedding_group=1,
pos_hidden_size=4096,
thumbnail_only=True
)
clip_embeddings_native_patch, valid_image_token_shape = visiual_token_downsample(
self.downsampler,
super_image_hidden_states, valid_image_token_shape,
visual_embedding_group=1, image_2d_pos=None
)
clip_embeddings_qformer = self.connector(clip_visual_outputs, attention_mask=navit_patch_attention_mask.view(navit_pixel_values.size(0), -1))
hidden_size = clip_embeddings_qformer.shape[-1]
clip_embeddings_qformer = clip_embeddings_qformer.view(batch_size_navit, -1, hidden_size)
clip_embeddings_qformer = self.projector(clip_embeddings_qformer)
merged_visual_embeddings = \
merge_native_qformer(
clip_embeddings_native_patch,
valid_image_token_shape,
clip_embeddings_qformer,
visual_source_spliter=self.visual_source_spliter_emb,
num_sub_images=4
)
chunk_encode = []
for idx, chunk in enumerate(prompt.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = self.tokenizer.encode(chunk)
else:
cur_encode = self.tokenizer.encode(chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
pixel_values = None
mm_inputs = self.prepare_inputs_labels_for_multimodal(
llm=self.language_model, input_ids=ids, pixel_values=pixel_values, clip_embeddings=merged_visual_embeddings)
generate_output = self.language_model.generate(
**mm_inputs,
generation_config=gen_config if gen_config is not None else self.gen_config,
streamer=None,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria
)
predict = self.tokenizer.decode(
generate_output[0], skip_special_tokens=True).strip()
return predict
def get_valid_visual_embedding(self, embedding, valid_token_shape):
if valid_token_shape is None:
return embedding
h, w = valid_token_shape
return embedding[:h, :w, :].reshape(h*w, -1)
# Modified from https://github.com/haotian-liu/LLaVA/blob/82fc5e0e5f4393a4c26851fa32c69ab37ea3b146/llava/model/llava_arch.py#L99 # noqa: E501
def prepare_inputs_labels_for_multimodal(
self,
llm: PreTrainedModel,
input_ids: torch.LongTensor = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
clip_embeddings: Optional[torch.FloatTensor] = None,
hard_coded_max_len: Optional[int] = None,
**kwargs):
if pixel_values is None and clip_embeddings is None:
return {
'input_ids': input_ids,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': None,
'labels': labels
}
valid_image_token_shape = kwargs.get('valid_image_token_shape', None)
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_inputs_embeds = []
new_labels = []
new_img_masks = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
cur_clip_emb = self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) if clip_embeddings is not None else None
cur_inputs_embeds_1 = llm.get_input_embeddings()(cur_input_ids)
if cur_clip_emb is not None and cur_pixel_values is not None:
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0], cur_clip_emb[0:0]], dim=0)
elif cur_pixel_values is not None:
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_pixel_values[0:0]], dim=0)
elif cur_clip_emb is not None:
cur_inputs_embeds = torch.cat(
[cur_inputs_embeds_1, cur_clip_emb[0:0]], dim=0)
else:
raise ValueError
new_inputs_embeds.append(cur_inputs_embeds)
new_labels.append(labels[batch_idx])
new_img_masks.append(torch.zeros(
cur_inputs_embeds.shape[0], device=cur_inputs_embeds.device).bool())
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(
cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [
cur_input_ids.shape[0]
]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] +
1:image_token_indices[i +
1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] +
1:image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_inputs_embeds = llm.get_input_embeddings()(
torch.cat(cur_input_ids_noim))
cur_inputs_embeds_no_im = torch.split(
cur_inputs_embeds, split_sizes, dim=0)
cur_new_inputs_embeds = []
cur_new_labels = []
cur_img_masks = []
for i in range(num_images + 1):
cur_new_inputs_embeds.append(cur_inputs_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
cur_img_masks.append(torch.zeros(
cur_inputs_embeds_no_im[i].shape[0], device=cur_inputs_embeds_no_im[i].device).bool())
if i < num_images:
cur_pixel_values = pixel_values[cur_image_idx] if pixel_values is not None else None
if(valid_image_token_shape is not None):
cur_clip_emb = \
self.get_valid_visual_embedding(clip_embeddings[cur_image_idx], valid_image_token_shape[cur_image_idx]) \
if clip_embeddings is not None else None
else:
cur_clip_emb = clip_embeddings[cur_image_idx] if clip_embeddings is not None else None
cur_image_idx += 1
# discrete token embeddings
if cur_pixel_values is not None:
cur_new_inputs_embeds.append(cur_pixel_values)
cur_img_masks.append(torch.ones(
cur_pixel_values.shape[0], device=cur_pixel_values.device).bool())
cur_new_labels.append(
torch.full((cur_pixel_values.shape[0], ),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype))
# clip embeddings
if cur_clip_emb is not None:
cur_new_inputs_embeds.append(cur_clip_emb)
cur_img_masks.append(torch.zeros(
cur_clip_emb.shape[0], device=cur_clip_emb.device).bool())
cur_new_labels.append(
torch.full((cur_clip_emb.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype))
cur_new_inputs_embeds = torch.cat(cur_new_inputs_embeds)
cur_new_labels = torch.cat(cur_new_labels)
cur_img_masks = torch.cat(cur_img_masks)
new_inputs_embeds.append(cur_new_inputs_embeds)
new_labels.append(cur_new_labels)
new_img_masks.append(cur_img_masks)
# Combine them
max_len = max(x.shape[0] for x in new_inputs_embeds)
if hard_coded_max_len is not None:
max_len = min(max_len, hard_coded_max_len)
batch_size = len(new_inputs_embeds)
new_inputs_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len),
dtype=attention_mask.dtype,
device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len),
dtype=position_ids.dtype,
device=position_ids.device)
new_img_masks_padded = torch.zeros((batch_size, max_len), device=new_img_masks[0].device).bool()
for i, (cur_new_embed,
cur_new_labels, cur_new_img_masks) in enumerate(zip(new_inputs_embeds, new_labels, new_img_masks)):
cur_new_embed = cur_new_embed[:max_len]
cur_new_labels = cur_new_labels[:max_len]
cur_new_img_masks = cur_new_img_masks[:max_len]
cur_len = cur_new_embed.shape[0]
new_inputs_embeds_padded.append(
torch.cat((cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device)),
dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0,
cur_len,
dtype=position_ids.dtype,
device=position_ids.device)
new_img_masks_padded[i, :cur_len] = cur_new_img_masks
new_inputs_embeds = torch.stack(new_inputs_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
prepared_data = {
'input_ids': None,
'position_ids': position_ids,
'attention_mask': attention_mask,
'past_key_values': past_key_values,
'inputs_embeds': new_inputs_embeds,
'labels': new_labels,
}
if pixel_values is not None:
prepared_data.update({'im_mask': new_img_masks_padded})
return prepared_data
AutoConfig.register("wemm_hf", WeMMConfig)
AutoModel.register(WeMMConfig, WemmForConditionalGeneration)
|