File size: 5,170 Bytes
3ec40c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import torch
from .vision_encoder import VisionEncoder
from .configuration_moondream import MoondreamConfig
from transformers import PreTrainedModel
from .modeling_phi import PhiForCausalLM
from .configuration_moondream import PhiConfig
class Moondream(PreTrainedModel):
config_class = MoondreamConfig
_supports_flash_attn_2 = True
def __init__(self, config):
super().__init__(config)
self.vision_encoder = VisionEncoder()
if type(config.phi_config) == dict:
phi_config = PhiConfig(
**config.phi_config, attn_implementation=config._attn_implementation
)
else:
phi_config = config.phi_config
self.text_model = PhiForCausalLM(phi_config)
@property
def device(self):
return self.text_model.device
def encode_image(self, image):
return self.vision_encoder(image)
def input_embeds(self, prompt, image_embeds, tokenizer):
def _tokenize(txt):
return tokenizer(
txt, return_tensors="pt", add_special_tokens=False
).input_ids.to(self.device)
text_emb = self.text_model.get_input_embeddings()
# Add BOS token
embeds = []
embeds.append(
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
)
if "<image>" not in prompt:
embeds.append(text_emb(_tokenize(prompt)))
else:
assert prompt.count("<image>") == 1
before, after = prompt.split("<image>")
if len(before) > 0:
embeds.append(text_emb(_tokenize(before)))
embeds.append(image_embeds.to(self.device))
if len(after) > 0:
embeds.append(text_emb(_tokenize(after)))
return torch.cat(embeds, dim=1)
def generate(
self,
image_embeds,
prompt,
tokenizer,
max_new_tokens=128,
**kwargs,
):
generate_config = {
"eos_token_id": tokenizer.eos_token_id,
"bos_token_id": tokenizer.bos_token_id,
"pad_token_id": tokenizer.bos_token_id,
"max_new_tokens": max_new_tokens,
**kwargs,
}
with torch.no_grad():
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
output_ids = self.text_model.generate(
inputs_embeds=inputs_embeds, **generate_config
)
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
def answer_question(
self,
image_embeds,
question,
tokenizer,
chat_history="",
result_queue=None,
**kwargs,
):
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
answer = self.generate(
image_embeds,
prompt,
tokenizer=tokenizer,
max_new_tokens=512,
**kwargs,
)[0]
cleaned_answer = answer.strip()
# Use the result_queue to pass the result if it is provided
if result_queue:
result_queue.put(cleaned_answer)
else:
return cleaned_answer
def batch_answer(
self,
images,
prompts,
tokenizer,
**kwargs,
):
image_embeds = self.encode_image(images)
templated_prompts = [
f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
]
prompt_embs = [
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
for prompt, image_embed in zip(templated_prompts, image_embeds)
]
bos_emb = prompt_embs[0][0]
max_len = max([p.shape[0] for p in prompt_embs])
inputs_embeds = torch.cat(
[
torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
for p in prompt_embs
],
dim=0,
)
attention_mask = torch.cat(
[
torch.cat(
[
torch.zeros(
1,
max_len - p.shape[0],
device=self.device,
dtype=torch.long,
),
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
],
dim=1,
)
for p in prompt_embs
],
dim=0,
)
generate_config = {
"eos_token_id": tokenizer.eos_token_id,
"bos_token_id": tokenizer.bos_token_id,
"pad_token_id": tokenizer.bos_token_id,
"max_new_tokens": 512,
**kwargs,
}
with torch.no_grad():
output_ids = self.text_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
**generate_config,
)
return [
x.strip()
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
]
|