File size: 1,034 Bytes
5d861ec b811bff 5d861ec 63e7b45 5d861ec fe47b88 5d861ec 155670b b811bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
license: apache-2.0
tags:
- art
- pytorch
- super-resolution
pipeline_tag: text-to-image
---
# AuraSR-v2
![aurasr example](https://storage.googleapis.com/falserverless/gallery/aurasr-animated.webp)
GAN-based Super-Resolution for upscaling generated images, a variation of the [GigaGAN](https://mingukkang.github.io/GigaGAN/) paper for image-conditioned upscaling. Torch implementation is based on the unofficial [lucidrains/gigagan-pytorch](https://github.com/lucidrains/gigagan-pytorch) repository.
## Usage
```bash
$ pip install aura-sr
```
```python
from aura_sr import AuraSR
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
```
```python
import requests
from io import BytesIO
from PIL import Image
def load_image_from_url(url):
response = requests.get(url)
image_data = BytesIO(response.content)
return Image.open(image_data)
image = load_image_from_url("https://mingukkang.github.io/GigaGAN/static/images/iguana_output.jpg").resize((256, 256))
upscaled_image = aura_sr.upscale_4x_overlapped(image)
``` |