VictoriaLinML
commited on
Commit
•
48ecb9b
1
Parent(s):
66a2665
Update README.md
Browse files
README.md
CHANGED
@@ -47,4 +47,96 @@ The training data statistics of XGLM-564M is shown in the table below.
|
|
47 |
|
48 |
## Model card
|
49 |
|
50 |
-
For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-564M development team.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
## Model card
|
49 |
|
50 |
+
For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-564M development team.
|
51 |
+
|
52 |
+
## Example (COPA)
|
53 |
+
The following snippet shows how to evaluate our models (GPT-3 style, zero-shot) on the Choice of Plausible Alternatives (COPA) task, using examples in English, Chinese and Hindi.
|
54 |
+
|
55 |
+
```python
|
56 |
+
import torch
|
57 |
+
import torch.nn.functional as F
|
58 |
+
|
59 |
+
from transformers import XGLMTokenizer, XGLMForCausalLM
|
60 |
+
|
61 |
+
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
|
62 |
+
model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M")
|
63 |
+
|
64 |
+
data_samples = {
|
65 |
+
'en': [
|
66 |
+
{
|
67 |
+
"premise": "I wanted to conserve energy.",
|
68 |
+
"choice1": "I swept the floor in the unoccupied room.",
|
69 |
+
"choice2": "I shut off the light in the unoccupied room.",
|
70 |
+
"question": "effect",
|
71 |
+
"label": "1"
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"premise": "The flame on the candle went out.",
|
75 |
+
"choice1": "I blew on the wick.",
|
76 |
+
"choice2": "I put a match to the wick.",
|
77 |
+
"question": "cause",
|
78 |
+
"label": "0"
|
79 |
+
}
|
80 |
+
],
|
81 |
+
'zh': [
|
82 |
+
{
|
83 |
+
"premise": "我想节约能源。",
|
84 |
+
"choice1": "我在空着的房间里扫了地板。",
|
85 |
+
"choice2": "我把空房间里的灯关了。",
|
86 |
+
"question": "effect",
|
87 |
+
"label": "1"
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"premise": "蜡烛上的火焰熄灭了。",
|
91 |
+
"choice1": "我吹灭了灯芯。",
|
92 |
+
"choice2": "我把一根火柴放在灯芯上。",
|
93 |
+
"question": "cause",
|
94 |
+
"label": "0"
|
95 |
+
}
|
96 |
+
],
|
97 |
+
'hi': [
|
98 |
+
{
|
99 |
+
"premise": "M te vle konsève enèji.",
|
100 |
+
"choice1": "Mwen te fin baleye chanm lib la.",
|
101 |
+
"choice2": "Mwen te femen limyè nan chanm lib la.",
|
102 |
+
"question": "effect",
|
103 |
+
"label": "1"
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"premise": "Flam bouji a te etenn.",
|
107 |
+
"choice1": "Mwen te soufle bouji a.",
|
108 |
+
"choice2": "Mwen te limen mèch bouji a.",
|
109 |
+
"question": "cause",
|
110 |
+
"label": "0"
|
111 |
+
}
|
112 |
+
]
|
113 |
+
}
|
114 |
+
|
115 |
+
def get_logprobs(prompt):
|
116 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
117 |
+
input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
|
118 |
+
outputs = model(**inputs, labels=input_ids)
|
119 |
+
logits = outputs.logits
|
120 |
+
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
|
121 |
+
return logprobs
|
122 |
+
|
123 |
+
# Zero-shot evaluation for the Choice of Plausible Alternatives (COPA) task.
|
124 |
+
# A return value of 0 indicates that the first alternative is more plausible,
|
125 |
+
# while 1 indicates that the second alternative is more plausible.
|
126 |
+
def COPA_eval(prompt, alternative1, alternative2):
|
127 |
+
lprob1 = get_logprobs(prompt + "\n" + alternative1).sum()
|
128 |
+
lprob2 = get_logprobs(prompt + "\n" + alternative2).sum()
|
129 |
+
return 0 if lprob1 > lprob2 else 1
|
130 |
+
|
131 |
+
for lang in data_samples_long:
|
132 |
+
for idx, example in enumerate(data_samples_long[lang]):
|
133 |
+
predict = COPA_eval(example["premise"], example["choice1"], example["choice2"])
|
134 |
+
print(f'{lang}-{idx}', predict, example['label'])
|
135 |
+
|
136 |
+
# en-0 1 1
|
137 |
+
# en-1 0 0
|
138 |
+
# zh-0 1 1
|
139 |
+
# zh-1 0 0
|
140 |
+
# hi-0 1 1
|
141 |
+
# hi-1 0 0
|
142 |
+
```
|