File size: 24,406 Bytes
7ef3558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from __future__ import annotations

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nested._internal.nested_tensor import nested_from_padded

from transformers import (
    LlamaConfig,
    LlamaModel,
    LlamaPreTrainedModel,
    PreTrainedTokenizer,
)
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import (
    LlamaAttention,
    LlamaDecoderLayer,
    LlamaMLP,
    LlamaRMSNorm,
    LlamaRotaryEmbedding,
    rotate_half,
)
from transformers.processing_utils import Unpack


class ModifiedLlamaAttention(LlamaAttention):
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
        self.is_causal = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin
        )

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, cache_kwargs
            )

        if self.config._attn_implementation != "eager":
            if self.config._attn_implementation == "sdpa" and kwargs.get(
                "output_attentions", False
            ):
                warnings.warn(
                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
                )

        attn_output, attn_weights = sdpa_attention_forward(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0,
            scaling=self.scaling,
            is_causal=False,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


def sdpa_attention_forward(
    module: torch.nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: torch.Tensor,
    dropout: float = 0.0,
    scaling: Optional[float] = None,
    is_causal: Optional[bool] = None,
    **kwargs: Any,
) -> Tuple[torch.Tensor, None]:
    if hasattr(module, "num_key_value_groups"):
        if key.is_nested:
            key = repeat_jagged_kv(key, module.num_key_value_groups)
            value = repeat_jagged_kv(value, module.num_key_value_groups)
        else:
            key = repeat_dense_kv(key, module.num_key_value_groups)
            value = repeat_dense_kv(value, module.num_key_value_groups)

    causal_mask = attention_mask
    if attention_mask is not None and causal_mask.ndim == 4:
        causal_mask = causal_mask[:, :, :, : key.shape[-2]]

    # SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
    # Reference: https://github.com/pytorch/pytorch/issues/112577.
    query = query.contiguous()
    key = key.contiguous()
    value = value.contiguous()

    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
    # Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool`
    if is_causal is None:
        is_causal = query.shape[2] > 1 and causal_mask is None

    # Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
    # We convert it to a bool for the SDPA kernel that only accepts bools.
    if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor):
        is_causal = is_causal.item()

    attn_output = torch.nn.functional.scaled_dot_product_attention(
        query,
        key,
        value,
        attn_mask=causal_mask,
        dropout_p=dropout,
        scale=scaling,
        is_causal=is_causal,
    )
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, None


def repeat_jagged_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    expand_shape = (batch, num_key_value_heads, -1, n_rep, head_dim)
    if n_rep == 1:
        return hidden_states
    hidden_states = (
        hidden_states.unsqueeze(3)
        .expand(expand_shape)
        .transpose(1, 2)
        .flatten(2, 3)
        .transpose(1, 2)
    )
    return hidden_states


def repeat_dense_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def apply_rotary_pos_emb(
    q: torch.Tensor,
    k: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
    unsqueeze_dim: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    if q.is_nested and k.is_nested:
        if q.layout != torch.jagged:
            raise NotImplementedError(f"Unsupported layout: {q.layout}")
        if k.layout != torch.jagged:
            raise NotImplementedError(f"Unsupported layout: {k.layout}")
        return _jagged_tensor_forward(q, k, cos, sin)
    else:
        return _padded_tensor_forward(q, k, cos, sin)


def _jagged_tensor_forward(
    q: torch.Tensor,
    k: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    q_dense = q.to_padded_tensor(0.0)
    k_dense = k.to_padded_tensor(0.0)
    q_dense_embed = (q_dense * cos) + (rotate_half(q_dense) * sin)
    k_dense_embed = (k_dense * cos) + (rotate_half(k_dense) * sin)
    q_jagged_embed = convert_dense_to_jagged(q, q_dense_embed)
    k_jagged_embed = convert_dense_to_jagged(k, k_dense_embed)
    return q_jagged_embed, k_jagged_embed


def _padded_tensor_forward(
    q: torch.Tensor,
    k: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def convert_dense_to_jagged(nested_q: torch.Tensor, q: torch.Tensor) -> torch.Tensor:
    padded_max_S = nested_q._get_max_seqlen()
    total_L = nested_q._values.shape[nested_q._ragged_idx - 1]
    if padded_max_S is None:
        # use upper bound on max seqlen if it's not present
        padded_max_S = total_L

    # convert dense tensor -> jagged
    q = q.expand(
        [
            x if i != nested_q._ragged_idx else padded_max_S
            for i, x in enumerate(q.shape)
        ]
    )
    nested_result = nested_from_padded(
        q,
        offsets=nested_q._offsets,
        ragged_idx=nested_q._ragged_idx,
        sum_S=total_L,
        min_seqlen=nested_q._get_min_seqlen(),
        max_seqlen=padded_max_S,
    )
    return nested_result


class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig, layer_idx: int) -> None:
        nn.Module.__init__(self)
        self.hidden_size: int = config.hidden_size

        self.self_attn = ModifiedLlamaAttention(config=config, layer_idx=layer_idx)

        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )


class LlamaBiModel(LlamaModel):
    def __init__(self, config: LlamaConfig) -> None:
        LlamaPreTrainedModel.__init__(self, config)
        self.padding_idx: int = config.pad_token_id
        self.vocab_size: int = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [
                ModifiedLlamaDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = LlamaRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_seen_tokens=None,
        output_attentions=False,
    ):
        """
        Updates the causal mask for attention computations.
        """
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and (attention_mask == 0.0).any():
                return attention_mask
            return None
        if attention_mask is None or attention_mask.dim() == 4:
            return attention_mask

        return AttentionMaskConverter._expand_mask(
            mask=attention_mask,
            dtype=input_tensor.dtype,
        )

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        # use_cache = use_cache if use_cache is not None else self.config.use_cache
        use_cache = False
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )
        if self.gradient_checkpointing and self.training and use_cache:
            warnings.warn(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.",
                DeprecationWarning,
                stacklevel=2,
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        return_legacy_cache = False
        if (
            use_cache and not isinstance(past_key_values, Cache) and not self.training
        ):  # kept for BC (non `Cache` `past_key_values` inputs)
            return_legacy_cache = True
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            warnings.warn(
                "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
                "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)",
                DeprecationWarning,
                stacklevel=2,
            )

        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            if inputs_embeds.is_nested:
                seq_len = inputs_embeds._get_max_seqlen()
            else:
                seq_len = inputs_embeds.shape[1]
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + seq_len,
                device=inputs_embeds.device,
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        if not inputs_embeds.is_nested:
            causal_mask = self._update_causal_mask(
                attention_mask,
                inputs_embeds,
                cache_position,
                past_key_values,
            )

        else:
            causal_mask = None
        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class DramaModel(LlamaBiModel):
    """
    DramaModel is a modified version of the LlamaModel that supports bi-directional attention
    and provides query and document encoding functionalities.
    """

    def __init__(self, config: LlamaConfig):
        """
        Initializes the DramaModel by disabling causal masking in self-attention layers.
        """
        super().__init__(config)
        for layer in self.layers:
            layer.self_attn.is_causal = False
        # query prefix
        self.query_prefix = "Query: "
        self.max_seq_len = 8192
        self.hidden_size = config.hidden_size

    def _average_pool(
        self, last_hidden_states: torch.Tensor, attention_mask: torch.Tensor
    ) -> torch.Tensor:
        """
        Computes the average pooled representation of the last hidden states.
        """
        last_hidden = last_hidden_states.masked_fill(
            ~attention_mask[..., None].bool(), 0.0
        )
        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

    def _tokenize(
        self,
        tokenizer: PreTrainedTokenizer,
        texts: list[str],
        max_seq_len: int = None,
        use_nested: bool = False,
    ):
        """
        Tokenizes input text sequences with optional sequence length restriction.
        """
        if max_seq_len is None:
            max_seq_len = self.max_seq_len
        if use_nested:
            tokenized = tokenizer(
                texts,
                truncation=True,
                max_length=max_seq_len,
                return_length=True,
            )
            tokenized.input_ids = torch.nested.nested_tensor(
                tokenized.input_ids, layout=torch.jagged
            ).to(self.device)
            tokenized.attention_mask = None
        else:
            tokenized = tokenizer(
                texts,
                padding=True,
                truncation=True,
                max_length=max_seq_len,
                return_tensors="pt",
            ).to(self.device)
        tokenizer_ouput = {}
        tokenizer_ouput["input_ids"] = tokenized.input_ids
        tokenizer_ouput["attention_mask"] = tokenized.attention_mask
        return tokenizer_ouput

    def encode(self, input_ids, attention_mask, dim, *args, **kwargs):
        """
        Pass through the model and compute normalized embeddings.

        Args:
            input_ids (torch.Tensor): Input token IDs.
            attention_mask (torch.Tensor): Attention mask tensor.
            dim (int): Dimensionality for output embeddings.

        Returns:
            torch.Tensor: Normalized output embeddings.
        """

        outputs = self.forward(
            input_ids, attention_mask, *args, **kwargs
        ).last_hidden_state
        if not outputs.is_nested:
            if dim is not None:
                outputs = outputs[:, :, :dim]
            embeddings = self._average_pool(outputs, attention_mask)
        else:
            if dim is not None:
                outputs, _ = outputs.split_with_sizes(
                    split_sizes=[dim, outputs.shape[-1] - dim], dim=-1
                )
            embeddings = outputs.sum(dim=-2)
        # normalize embeddings
        embeddings = F.normalize(embeddings, p=2, dim=1)
        return embeddings

    def encode_queries(
        self,
        tokenizer: PreTrainedTokenizer,
        queries: list[str],
        max_seq_len: int = None,
        dim: int = None,
        use_nested: bool = False,
    ):
        """
        Encodes a list of queries into embeddings.

        Args:
            tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
            queries (list[str]): List of query texts.
            max_seq_len (int, optional): Maximum sequence length.
            dim (int, optional): Dimensionality for output embeddings.

        Returns:
            torch.Tensor: Encoded query embeddings in shape (num_queries, dim).
        """
        if not queries:
            raise ValueError("queries must not be empty.")
        if not isinstance(queries, list) or not all(
            isinstance(q, str) for q in queries
        ):
            raise ValueError("queries must be a list of strings.")
        if tokenizer is None:
            raise ValueError("tokenizer must not be None.")
        if dim is not None and (dim < 1 or dim > self.hidden_size):
            raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
        queries = [self.query_prefix + query for query in queries]
        tokenized_queries = self._tokenize(tokenizer, queries, max_seq_len, use_nested)
        embeddings = self.encode(**tokenized_queries, dim=dim)
        return embeddings

    def encode_documents(
        self,
        tokenizer: PreTrainedTokenizer,
        documents: list[str],
        max_seq_len: int = None,
        dim: int = None,
        use_nested: bool = False,
    ):
        """
        Encodes a list of documents into embeddings.

        Args:
            tokenizer (PreTrainedTokenizer): Tokenizer for text processing.
            documents (list[str]): List of document texts.
            max_seq_len (int, optional): Maximum sequence length.
            dim (int, optional): Dimensionality for output embeddings.

        Returns:
            torch.Tensor: Encoded document embeddings in shape (num_documents, dim).
        """
        if not documents:
            raise ValueError("documents must not be empty.")
        if not isinstance(documents, list) or not all(
            isinstance(d, str) for d in documents
        ):
            raise ValueError("documents must be a list of strings.")
        if tokenizer is None:
            raise ValueError("tokenizer must not be None.")
        if dim is not None and (dim < 1 or dim > self.hidden_size):
            raise ValueError(f"dim must be in range [1, {self.hidden_size}].")
        tokenized_documents = self._tokenize(
            tokenizer, documents, max_seq_len, use_nested
        )
        embeddings = self.encode(**tokenized_documents, dim=dim)
        return embeddings