|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
# Model Details |
|
|
|
MobileLLM is introduced: "[MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases](https://arxiv.org/abs/2402.14905)", published in ICML 2024. |
|
|
|
**Model Developer**: Meta |
|
|
|
**Model Architecture**: MobileLLM is an auto-regressive language model leveraging an optimized transformer architecture, specifically engineered for on-device applications with constrained resources. |
|
MobileLLM integrated several key techniques including: (1) SwiGLU activation function, (2) deep and thin architectures, (3) embedding sharing, (4) grouped-query attention. MobileLLM-125M/350M attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M SoTA models on zero-shot commonsense reasoning tasks. In our updated version, we further demonstrate that our design philosophy scales effectively to larger models, with SoTA results for MobileLLM-600M/1B/1.5B. |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/660f893bae89429c07a32cdb/ahtsJXC5vBVIdmsMQDNHv.jpeg) |
|
|
|
| | # Layers | # Attnetion Heads | # KV Heads | Token Dimension | Params | |
|
| --- | --- | --- | --- | --- | --- | |
|
| MobileLLM-125M | 30 | 9 | 3 | 576 | 124.6M | |
|
| MobileLLM-350M | 32 | 15 | 5 | 960 | 345.3M | |
|
| MobileLLM-600M | 40 | 18 | 6 | 1152 | 603.1M | |
|
| MobileLLM-1B | 54 | 20 | 5 | 1280 | 1.01B | |
|
| MobileLLM-1.5B | 54 | 25 | 5 | 1600 | 1.51B | |
|
|
|
| | Training Data | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| MobileLLM-125M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens | |
|
| MobileLLM-350M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens | |
|
| MobileLLM-600M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens | |
|
| MobileLLM-1B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens | |
|
| MobileLLM-1.5B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens | |
|
|
|
|
|
# How to use |
|
We are providing 2 ways to run the model: |
|
|
|
[HuggingFace](#huggingface) |
|
|
|
[MobileLLM codebase](#mobilellm-codebase) |
|
|
|
## HuggingFace |
|
To load the pretrained model for further finetuning or evaluation: |
|
```bash |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/MobileLLM-350M") |
|
model = AutoModelForCausalLM.from_pretrained("facebook/MobileLLM-350M", trust_remote_code=True) |
|
``` |
|
Note that the default tokenizer does not contain special tokens. For example you can use: |
|
```bash |
|
tokenizer.add_special_tokens( |
|
{ |
|
"eos_token": "</s>", |
|
"bos_token": "<s>", |
|
"unk_token": "<unk>", |
|
} |
|
) |
|
``` |
|
## MobileLLM codebase |
|
We provide the pretraining code in https://github.com/facebookresearch/MobileLLM |
|
|
|
```bash |
|
> git clone https://github.com/facebookresearch/MobileLLM |
|
> pip install -r requirement.txt |
|
|
|
# data pre-process and specify the data path in pretrain.sh |
|
# run pretraining |
|
> bash pretrain.sh |
|
``` |
|
We also provide evaluation script for calculating wiki2 testset ppl |
|
```bash |
|
> bash eval.sh |
|
``` |
|
|
|
You can find more details in the GitHub repo. |
|
|
|
# Training cost |
|
It takes the following number of days to train MobileLLM on 1T tokens using 32 NVIDIA A100 80G GPUs. |
|
| 125M | 350M | 600M | 1B | 1.5B | |
|
| --- | --- | --- | --- | --- | |
|
| ~3 days| ~6 days| ~8 days | ~12 days | ~18 days | |
|
|
|
|
|
# Evaluation |
|
We evaluate the pretrained MobileLLM models on Zero-shot Common Sense Reasoning tasks |
|
|
|
## MobileLLM-125M |
|
|
|
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| OPT-125M | 41.3 | 25.2 | 57.5 | 62.0 | 41.9 | 31.1 | 31.2 | 50.8 | 42.6 | |
|
| GPT-neo-125M | 40.7 | 24.8 | 61.3 | 62.5 | 41.9 | 29.7 | 31.6 | 50.7 | 42.9 | |
|
| Pythia-160M | 40.0 | 25.3 | 59.5 | 62.0 | 41.5 | 29.9 | 31.2 | 50.9 | 42.5 | |
|
| **MobileLLM-125M** | 43.9 | 27.1 | 60.2 | 65.3 | 42.4 | 38.9 | 39.5 | 53.1 | **46.3** | |
|
| **MobileLLM-LS-125M** | 45.8 | 28.7 | 60.4 | 65.7 | 42.9 | 39.5 | 41.1 | 52.1 | **47.0** | |
|
|
|
## MobileLLM-350M |
|
|
|
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| OPT-350M | 41.9 | 25.7 | 54.0 | 64.8 | 42.6 | 36.2 | 33.3 | 52.4 | 43.9 | |
|
| Pythia-410M | 47.1 | 30.3 | 55.3 | 67.2 | 43.1 | 40.1 | 36.2 | 53.4 | 46.6 | |
|
| **MobileLLM-350M** | 53.8 | 33.5 | 62.4 | 68.6 | 44.7 | 49.6 | 40.0 | 57.6 | **51.3** | |
|
| **MobileLLM-LS-350M** | 54.4 | 32.5 | 62.8 | 69.8 | 44.1 | 50.6 | 45.8 | 57.2 | **52.1** | |
|
|
|
## MobileLLM-600M |
|
|
|
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| Qwen1.5-500M | 54.7 | 32.1 | 46.9 | 68.9 | 46.0 | 48.8 | 37.7 | 55.0 | 48.8 | |
|
| BLOOM-560M | 43.7 | 27.5 | 53.7 | 65.1 | 42.5 | 36.5 | 32.6 | 52.2 | 44.2 | |
|
| MobiLlama-800M | 52.0 | 31.7 | 54.6 | 73.0 | 43.3 | 52.3 | 42.5 | 56.3 | 50.7 | |
|
| **MobileLLM-600M** | 58.1 | 35.8 | 61.0 | 72.3 | 44.9 | 55.9 | 47.9 | 58.6 | **54.3** | |
|
|
|
## MobileLLM-1B |
|
|
|
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| Pythia-1B | 49.9 | 30.4 | 58.7 | 69.2 | 43.3 | 47.4 | 38.6 | 52.2 | 48.7 | |
|
| MobiLlama-1B | 59.7 | 38.4 | 59.2 | 74.5 | 44.9 | 62.0 | 43.7 | 59.0 | 55.2 | |
|
| Falcon-1B | 59.5 | 38.4 | 63.9 | 74.6 | 44.6 | 62.9 | 45.6 | 60.9 | 56.3 | |
|
| BLOOM-1.1B | 47.6 | 27.3 | 58.6 | 67.0 | 42.4 | 42.2 | 36.6 | 53.8 | 46.9 | |
|
| TinyLlama-1.1B | 59.2 | 37.1 | 58.1 | 72.9 | 43.9 | 59.1 | 44.7 | 58.8 | 54.2 | |
|
| **MobileLLM-1B** | 63.0 | 39.0 | 66.7 | 74.4 | 45.0 | 61.4 | 46.8 | 62.3 | **57.3** | |
|
|
|
## MobileLLM-1.5B |
|
|
|
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| GPT-neo-1.3B | 51.3 | 33.0 | 61.8 | 70.9 | 43.7 | 48.6 | 41.2 | 54.5 | 50.6 | |
|
| OPT-1.3B | 54.4 | 31.7 | 58.4 | 71.5 | 44.7 | 53.7 | 44.6 | 59.1 | 52.3 | |
|
| BLOOM-1.7B | 50.9 | 31.2 | 61.7 | 70.0 | 43.2 | 47.2 | 36.2 | 56.1 | 49.6 | |
|
| Qwen1.5-1.8B | 61.1 | 36.5 | 68.3 | 74.1 | 47.2 | 60.4 | 42.9 | 61.2 | 56.5 | |
|
| GPT-neo-2.7B | 55.8 | 34.3 | 62.4 | 72.9 | 43.6 | 55.6 | 40.0 | 57.9 | 52.8 | |
|
| OPT-2.7B | 56.6 | 34.6 | 61.8 | 74.5 | 45.6 | 60.2 | 48.2 | 59.6 | 55.1 | |
|
| Pythia-2.8B | 59.4 | 38.9 | 66.1 | 73.8 | 44.5 | 59.6 | 45.0 | 59.4 | 55.8 | |
|
| BLOOM-3B | 55.1 | 33.6 | 62.1 | 70.5 | 43.2 | 53.9 | 41.6 | 58.2 | 52.3 | |
|
| **MobileLLM-1.5B** | 67.5 | 40.9 | 65.7 | 74.8 | 46.4 | 64.5 | 50.5 | 64.7 | **59.4** | |
|
|
|
# Citation |
|
|
|
If you find our code useful for your research, please consider citing: |
|
|
|
@article{liu2024mobilellm, |
|
title={MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases}, |
|
author={Liu, Zechun and Zhao, Changsheng and Iandola, Forrest and Lai, Chen and Tian, Yuandong and Fedorov, Igor and Xiong, Yunyang and Chang, Ernie and Shi, Yangyang and Krishnamoorthi, Raghuraman and others}, |
|
journal={arXiv preprint arXiv:2402.14905}, |
|
year={2024} |
|
} |
|
|
|
# License |
|
|
|
MobileLLM is CC-BY-NC 4.0 licensed as of now. |