eurekalabdawara's picture
End of training
d038a32 verified
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5375
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2530
- Accuracy: 0.5375
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.9208 | 0.25 |
| No log | 2.0 | 80 | 1.5773 | 0.425 |
| No log | 3.0 | 120 | 1.4861 | 0.4188 |
| No log | 4.0 | 160 | 1.4287 | 0.4813 |
| No log | 5.0 | 200 | 1.3897 | 0.5 |
| No log | 6.0 | 240 | 1.3243 | 0.525 |
| No log | 7.0 | 280 | 1.3144 | 0.5125 |
| No log | 8.0 | 320 | 1.3149 | 0.4688 |
| No log | 9.0 | 360 | 1.3041 | 0.475 |
| No log | 10.0 | 400 | 1.2425 | 0.55 |
| No log | 11.0 | 440 | 1.3743 | 0.4813 |
| No log | 12.0 | 480 | 1.3849 | 0.4688 |
| 1.0637 | 13.0 | 520 | 1.2804 | 0.5437 |
| 1.0637 | 14.0 | 560 | 1.3975 | 0.4875 |
| 1.0637 | 15.0 | 600 | 1.3569 | 0.525 |
| 1.0637 | 16.0 | 640 | 1.3928 | 0.5 |
| 1.0637 | 17.0 | 680 | 1.3665 | 0.5 |
| 1.0637 | 18.0 | 720 | 1.3320 | 0.5188 |
| 1.0637 | 19.0 | 760 | 1.3358 | 0.5 |
| 1.0637 | 20.0 | 800 | 1.3064 | 0.5312 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2