File size: 7,917 Bytes
9de9fbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from node import InferenceNode
import json
import torch
from PIL import Image as IMG
import numpy as np
from std_msgs.msg import String, Bool
import argparse
import h5py
import os, pickle
from einops import rearrange
import numpy as np
from PIL import Image
import time
"""
#!/usr/bin/python3
"""
import argparse
import sys
import threading
import time
import yaml
from collections import deque
import numpy as np
import torch
from cv_bridge import CvBridge
from geometry_msgs.msg import Twist
from nav_msgs.msg import Odometry
from std_msgs.msg import Header
import cv2
from scripts.agilex_model import create_model
class RDTNode(InferenceNode):
def __init__(self, action_chunk, instruction, ckpt_dir, unnorm_key, hz=20, max_timestep=1000, dataset_name=None, single_arm=True, lang_embed_name=''):
self.ckpt_dir = ckpt_dir
self.lang_embed_name = f'outs/{lang_embed_name}.pt'
self.run_name = f'rdt_{ckpt_dir.split("/")[-1]}' # for video name
self.single_arm = single_arm
super().__init__(hz=hz, max_timestep=max_timestep, dataset_name=dataset_name, single_arm=single_arm)
self.obs['language_instruction'] = f'{instruction}'
self.action_chunk = action_chunk
self.action_counter = 0
self.unnorm_key = unnorm_key
self.prompt_sub = self._node.create_subscription(String, '/vla/prompt', self.prompt_sub, 1)
self.attn = None
def prompt_sub(self, msg):
if self.policy is not None:
img = self.obs['image']
pil_image = Image.fromarray(img)
print(self.policy.inference_prompt(pil_image, msg.data))
def bringup_model(self):
with open('configs/base.yaml', "r") as fp:
config = yaml.safe_load(fp)
self.policy = create_model(
args=config,
dtype=torch.bfloat16,
pretrained=self.ckpt_dir,
# pretrained_text_encoder_name_or_path="google/t5-v1_1-xxl",
pretrained_vision_encoder_name_or_path="google/siglip-so400m-patch14-384",
control_frequency=20,
single_arm=self.single_arm
)
self.lang_embeddings = torch.load(self.lang_embed_name)["embeddings"]
def inference_fn(self):
if self.single_arm:
image_arrs = [
self.frame_buffer[-2],
None,
None,
self.frame_buffer[-1],
None,
None
# self.left_frame_buffer[-1],
]
else:
image_arrs = [
self.frame_buffer[-2],
self.left_frame_buffer[-2],
None,
self.frame_buffer[-1],
self.left_frame_buffer[-1],
None
]
images = [Image.fromarray(arr) if arr is not None else None
for arr in image_arrs]
if self.single_arm:
proprio = torch.tensor(self.joint_pos_buffer[-1][7:]).unsqueeze(0)
else:
proprio = torch.tensor(self.joint_pos_buffer[-1]).unsqueeze(0)
actions = self.policy.step(
proprio=proprio,
images=images,
text_embeds=self.lang_embeddings
).squeeze(0).cpu().numpy()
return actions
def inference(self):
if self.action_counter == 0:
with torch.inference_mode():
# Len , action dim
start_time = time.time()
self.actions = self.inference_fn()
end_time = time.time()
print(f'{end_time - start_time:.6f} sec')
# print(self.actions)
action = self.actions[self.action_counter]
# action[-1] = action[-1] * 4.0
if self.single_arm:
self.joint_action(None, action)
else:
self.joint_action(action[:7], action[7:])
# print(action)
# self.joint_action(None, )
# print(action[6], action[-1])
# self.ee_action(None, action)
# self.target_ee_left += np.array(action[:6])
# self.target_ee_right += np.array(action[7:-1])
# action_target_ee_left = np.concatenate([self.target_ee_left, [action[6]]])
# action_target_ee_right = np.concatenate([self.target_ee_right, [action[-1]]])
# print(action_target_ee_right)
# self.ee_action(None, action_target_ee_right)
# self.ee_action(action_target_ee_left, action_target_ee_right)
self.action_counter += 1
if self.action_counter == self.action_chunk:
self.action_counter = 0
def done_callback(self, msg):
if not self.start:
## For delta ee control
if self.data_list is not None:
root = h5py.File(self.data_list[self.num], 'r')
skip = 5
if self.single_arm:
self.target_joint_right = root['observation']['joint_pos'][skip, :7]
self.joint_action(None, self.target_joint_right)
else:
self.target_joint_left = root['observation']['joint_pos'][skip, :7]
self.target_joint_right = root['observation']['joint_pos'][skip, 7:]
self.joint_action(self.target_joint_left, self.target_joint_right)
time.sleep(2)
else:
self.target_ee_left = self.obs['left_pose']
self.target_ee_right = self.obs['right_pose']
print('Inference & Video Recording Start')
self.start = True
msg = Bool()
msg.data = True
self.sync_pub.publish(msg)
self.window.video_start()
else:
self.start = False
msg = Bool()
msg.data = False
self.sync_pub.publish(msg)
self.init_robot()
self.action_counter = 0
if self.window.video_recording:
self.window.video_stop()
self.initialize()
print('Next Inference Ready')
if __name__ == "__main__":
import cv2
ckpt_dir = '/home/univ/workspace/rdt-ckpts/checkpoint-38000'
action_chunk = 64
hz = 20
instruction = 'handover the stuffed doll'
unnorm_key = 'handover_kirby'
single_arm = False
dataset_name = [
'vla_upright_mug',
'vla_sweep_screws',
'vla_pick_ball_place_bin',
'twinvla_handover_kirby',
'twinvla_put_bottle',
'twinvla_detach_ball',
'twinvla_tear_paper_towel'
]
lang_embed_name = [
'upright_mug',
'sweep_screws',
'pick_ball_place_bin',
'handover_kirby'
]
num = 3
node = RDTNode(
action_chunk=action_chunk,
instruction=instruction,
ckpt_dir=ckpt_dir,
unnorm_key=unnorm_key,
hz=hz,
max_timestep=1000,
dataset_name=dataset_name[num],
lang_embed_name=lang_embed_name[num],
single_arm=single_arm
)
while True:
try:
if node.single_arm:
img = cv2.cvtColor(node.obs['image'], cv2.COLOR_BGR2RGB)
else:
left_img = cv2.cvtColor(node.obs['leftview_image'], cv2.COLOR_BGR2RGB)
right_img = cv2.cvtColor(node.obs['image'], cv2.COLOR_BGR2RGB)
img = cv2.hconcat([left_img, right_img])
if node.start:
node.window.show(img, overlay_img=None, text=node.obs['language_instruction'])
else:
# print(node.attn)
node.boundary_query()
node.window.show(img, overlay_img=node.overlay_img, text=node.obs['language_instruction'], grid=node.grid)
except KeyboardInterrupt:
node.ros_close()
except Exception as e:
print(f"An error occurred: {e}")
# node.ros_close() |