File size: 7,917 Bytes
9de9fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from node import InferenceNode
import json
import torch
from PIL import Image as IMG
import numpy as np
from std_msgs.msg import String, Bool
import argparse
import h5py
import os, pickle
from einops import rearrange
import numpy as np
from PIL import Image
import time
"""
#!/usr/bin/python3
"""

import argparse
import sys
import threading
import time
import yaml
from collections import deque

import numpy as np
import torch
from cv_bridge import CvBridge
from geometry_msgs.msg import Twist
from nav_msgs.msg import Odometry
from std_msgs.msg import Header
import cv2

from scripts.agilex_model import create_model

class RDTNode(InferenceNode):
    def __init__(self, action_chunk, instruction, ckpt_dir, unnorm_key, hz=20, max_timestep=1000, dataset_name=None, single_arm=True, lang_embed_name=''): 
        self.ckpt_dir = ckpt_dir
        self.lang_embed_name = f'outs/{lang_embed_name}.pt'
        self.run_name = f'rdt_{ckpt_dir.split("/")[-1]}' # for video name
        self.single_arm = single_arm
        super().__init__(hz=hz, max_timestep=max_timestep, dataset_name=dataset_name, single_arm=single_arm)
        self.obs['language_instruction'] = f'{instruction}'
        self.action_chunk = action_chunk
        self.action_counter = 0
        self.unnorm_key = unnorm_key
        self.prompt_sub = self._node.create_subscription(String, '/vla/prompt', self.prompt_sub, 1)
        self.attn = None
        

    def prompt_sub(self, msg):
        if self.policy is not None:
            img = self.obs['image']
            pil_image = Image.fromarray(img)
            print(self.policy.inference_prompt(pil_image, msg.data))

    def bringup_model(self):
        with open('configs/base.yaml', "r") as fp:
            config = yaml.safe_load(fp)
        self.policy =  create_model(
            args=config, 
            dtype=torch.bfloat16,
            pretrained=self.ckpt_dir,
            # pretrained_text_encoder_name_or_path="google/t5-v1_1-xxl",
            pretrained_vision_encoder_name_or_path="google/siglip-so400m-patch14-384",
            control_frequency=20,
            single_arm=self.single_arm
        )
        self.lang_embeddings = torch.load(self.lang_embed_name)["embeddings"]

    def inference_fn(self):
        if self.single_arm:
            image_arrs = [
                self.frame_buffer[-2],
                None,
                None,
                self.frame_buffer[-1],
                None,
                None
                # self.left_frame_buffer[-1],
            ]
        else:
            image_arrs = [
                self.frame_buffer[-2],
                self.left_frame_buffer[-2],
                None,
                self.frame_buffer[-1],
                self.left_frame_buffer[-1],
                None
            ]
        images = [Image.fromarray(arr) if arr is not None else None
                  for arr in image_arrs]
        if self.single_arm:
            proprio = torch.tensor(self.joint_pos_buffer[-1][7:]).unsqueeze(0)
        else:
            proprio = torch.tensor(self.joint_pos_buffer[-1]).unsqueeze(0)

        actions = self.policy.step(
            proprio=proprio,
            images=images,
            text_embeds=self.lang_embeddings 
        ).squeeze(0).cpu().numpy()

        return actions
        
    def inference(self):
        if self.action_counter == 0:
            with torch.inference_mode():
                # Len , action dim
                start_time = time.time()
                self.actions = self.inference_fn()
                end_time = time.time()
                print(f'{end_time - start_time:.6f} sec')
        # print(self.actions)
        action = self.actions[self.action_counter]
        # action[-1] = action[-1] * 4.0
        if self.single_arm:
            self.joint_action(None, action)
        else:
            self.joint_action(action[:7], action[7:])
        # print(action)
        # self.joint_action(None, )
        # print(action[6], action[-1])
        # self.ee_action(None, action)
        # self.target_ee_left += np.array(action[:6])
        # self.target_ee_right += np.array(action[7:-1])
        # action_target_ee_left = np.concatenate([self.target_ee_left, [action[6]]])
        # action_target_ee_right = np.concatenate([self.target_ee_right, [action[-1]]])
        # print(action_target_ee_right)
        # self.ee_action(None, action_target_ee_right)
        # self.ee_action(action_target_ee_left, action_target_ee_right)
     
        self.action_counter += 1
        if self.action_counter == self.action_chunk:
            self.action_counter = 0

    def done_callback(self, msg):
        if not self.start:
            ## For delta ee control
            if self.data_list is not None:
                root = h5py.File(self.data_list[self.num], 'r')
                skip = 5
                if self.single_arm:
                    self.target_joint_right = root['observation']['joint_pos'][skip, :7]
                    self.joint_action(None, self.target_joint_right)
                else:
                    self.target_joint_left = root['observation']['joint_pos'][skip, :7]
                    self.target_joint_right = root['observation']['joint_pos'][skip, 7:]
                    self.joint_action(self.target_joint_left, self.target_joint_right)
                time.sleep(2)
                
            else:
                self.target_ee_left = self.obs['left_pose']
                self.target_ee_right = self.obs['right_pose']
            print('Inference & Video Recording Start')
            self.start = True
            msg = Bool()
            msg.data = True
            self.sync_pub.publish(msg)
            self.window.video_start()
        else:
            self.start = False
            msg = Bool()
            msg.data = False
            self.sync_pub.publish(msg)
            self.init_robot()
            self.action_counter = 0
            if self.window.video_recording:
                self.window.video_stop()
            self.initialize()
            print('Next Inference Ready')

if __name__ == "__main__":
    import cv2

    ckpt_dir = '/home/univ/workspace/rdt-ckpts/checkpoint-38000'

    action_chunk = 64
    hz = 20

    instruction = 'handover the stuffed doll'
    unnorm_key = 'handover_kirby'
    single_arm = False
    dataset_name = [
        'vla_upright_mug',
        'vla_sweep_screws',
        'vla_pick_ball_place_bin',
        'twinvla_handover_kirby',
        'twinvla_put_bottle',
        'twinvla_detach_ball',
        'twinvla_tear_paper_towel'
    ]
    lang_embed_name = [
        'upright_mug',
        'sweep_screws',
        'pick_ball_place_bin',
        'handover_kirby'
    ]
    num = 3

    node = RDTNode(
        action_chunk=action_chunk,
        instruction=instruction,
        ckpt_dir=ckpt_dir,
        unnorm_key=unnorm_key,
        hz=hz,
        max_timestep=1000,
        dataset_name=dataset_name[num],
        lang_embed_name=lang_embed_name[num],
        single_arm=single_arm
    )

    while True: 
        try:
            if node.single_arm:
                img = cv2.cvtColor(node.obs['image'], cv2.COLOR_BGR2RGB)
            else:
                left_img = cv2.cvtColor(node.obs['leftview_image'], cv2.COLOR_BGR2RGB)
                right_img = cv2.cvtColor(node.obs['image'], cv2.COLOR_BGR2RGB)
                img = cv2.hconcat([left_img, right_img])
            if node.start:
                node.window.show(img, overlay_img=None, text=node.obs['language_instruction'])
            else:
                # print(node.attn)
                node.boundary_query()
                node.window.show(img, overlay_img=node.overlay_img, text=node.obs['language_instruction'], grid=node.grid)
        except KeyboardInterrupt:
            node.ros_close()
        
        except Exception as e:
            print(f"An error occurred: {e}")

    # node.ros_close()