File size: 2,023 Bytes
ff2b25b
d8fd43b
ff2b25b
 
 
 
 
 
 
 
 
 
 
 
d8fd43b
ff2b25b
0c551fd
ff2b25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b293e76
 
ff2b25b
 
 
d8fd43b
ff2b25b
 
 
 
b293e76
 
0c551fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff2b25b
 
 
 
b293e76
d8fd43b
ff2b25b
d8fd43b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: google/pegasus-xsum
tags:
- generated_from_trainer
model-index:
- name: pegasus-legalease
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-legalease

This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2199

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.09  | 250  | 5.0708          |
| 5.3413        | 0.18  | 500  | 4.4545          |
| 5.3413        | 0.27  | 750  | 1.4978          |
| 2.6159        | 0.35  | 1000 | 1.2829          |
| 2.6159        | 0.44  | 1250 | 1.2490          |
| 1.398         | 0.53  | 1500 | 1.2307          |
| 1.398         | 0.62  | 1750 | 1.2240          |
| 1.3147        | 0.71  | 2000 | 1.2287          |
| 1.3147        | 0.8   | 2250 | 1.2275          |
| 1.3308        | 0.89  | 2500 | 1.2275          |
| 1.3308        | 0.98  | 2750 | 1.2199          |
| 1.349         | 1.06  | 3000 | 1.2183          |
| 1.349         | 1.15  | 3250 | 1.2185          |
| 1.3102        | 1.24  | 3500 | 1.2194          |
| 1.3102        | 1.33  | 3750 | 1.2199          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2