File size: 1,875 Bytes
ff2b25b
 
 
 
 
 
db14b95
 
 
 
 
 
 
ff2b25b
 
 
 
 
 
 
 
 
db14b95
 
 
 
ff2b25b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b293e76
 
ff2b25b
 
 
b293e76
ff2b25b
 
 
 
b293e76
 
 
 
 
 
 
 
 
 
 
 
 
ff2b25b
 
 
 
b293e76
ff2b25b
 
db14b95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
tags:
- generated_from_trainer
model-index:
- name: pegasus-legalease
  results: []
datasets:
- hheiden/us-congress-117-bills
language:
- en
metrics:
- rouge
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-legalease

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Rouge1: 0.4632
- Rouge2: 0.3210
- RougeL: 0.4055
- Rougelsum: 0.4196

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.09  | 250  | 4.5607          |
| 4.8769        | 0.18  | 500  | 4.2187          |
| 4.8769        | 0.27  | 750  | 2.2905          |
| 2.9804        | 0.35  | 1000 | 1.1894          |
| 2.9804        | 0.44  | 1250 | 1.1604          |
| 1.3716        | 0.53  | 1500 | 1.1433          |
| 1.3716        | 0.62  | 1750 | 1.1318          |
| 1.2964        | 0.71  | 2000 | 1.1244          |
| 1.2964        | 0.8   | 2250 | 1.1188          |
| 1.248         | 0.89  | 2500 | 1.1152          |
| 1.248         | 0.98  | 2750 | 1.1142          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2