File size: 8,577 Bytes
e39fd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import streamlit as st
import streamlit.components.v1 as components
import openai
import subprocess
import re
import os
import pandas as pd
import socket
import time

# csv_name = "./Financial_Sample.csv"
csv_name='./global_superstore_2016.csv'
try:
    df = pd.read_csv(csv_name)
    metadata = {
        "columns": df.columns.tolist(),
        "dtypes": df.dtypes.apply(lambda x: x.name).to_dict(),
        "shape": df.shape,
    }
except Exception as e:
    st.error(f"Error loading CSV file: {e}")
    st.stop()


def is_port_in_use(port: int) -> bool:
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        return s.connect_ex(("localhost", port)) == 0


def find_free_port(starting_port: int) -> int:
    port = starting_port
    while is_port_in_use(port):
        port += 1
    return port


def runcode(code: str) -> tuple:
    with open("code.py", "w") as file:
        file.write(code)

    starting_port = 8501
    free_port = find_free_port(starting_port)

    try:
        process = subprocess.Popen(
            ["streamlit", "run", "code.py", "--server.port", str(free_port)],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        time.sleep(5)

        if process.poll() is None:
            return (
                free_port,
                f"Streamlit process started successfully on port {free_port}",
            )
        else:
            stdout, stderr = process.communicate()
            return (None, f"Streamlit process exited unexpectedly. Error: {stderr}")

    except FileNotFoundError:
        return (None, "Error: Streamlit is not installed or not in PATH")
    except Exception as e:
        return (None, f"An unexpected error occurred: {str(e)}")


class Agent:
    def __init__(self, system_prompt="", known_actions=None):
        self.system = system_prompt
        self.messages = []
        self.known_actions = known_actions if known_actions is not None else {}

        self.client = openai.OpenAI(
            api_key= os.environ.get('TOGETHER_API_KEY'),
            base_url="https://api.together.xyz/v1",
        )
        self.messages.append({"role": "system", "content": self.system})

    def __call__(self, message):
        self.messages.append({"role": "user", "content": message})
        result = self.execute()
        self.messages.append({"role": "assistant", "content": result})
        return result

    def execute(self):
        try:
            # Using 405B for Better performance
            response = self.client.chat.completions.create(
                model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
                stop=["PAUSE"],
                messages=self.messages,
            )
            return response.choices[0].message.content
        except Exception as e:
            return f"Error executing model: {str(e)}"

    def query(self, question, max_turns=5):
        i = 0
        next_prompt = question
        while i < max_turns:
            i += 1
            result = self(next_prompt)
            st.session_state.logs += f"Assistant: {result}\n"
            print(f"Assistant: {result}\n")

            # action_re = re.search(r"Action: (\w+): (.*)", result, re.DOTALL)
            # Modify RE for detecting if input goes to next line TODO,BUG
            action_re = re.search(r"Action: (\w+): *\n(.*)", result, re.DOTALL)
            if action_re:
                action = action_re.group(1)
                action_input = action_re.group(2).strip()
                st.session_state.logs += (
                    f"Action: {action}\nAction Input: {action_input}\n"
                )
                print(f"Action: {action}\nAction Input: {action_input}\n")
                if action not in self.known_actions:
                    error_msg = f"Unknown action: {action}: {action_input}"
                    raise Exception(error_msg)

                st.session_state.logs += (
                    f" ------------------------\n running {action} {action_input}\n"
                )
                print(f" ------------------------\n running {action} {action_input}\n")
                observation = self.known_actions[action](action_input)
                st.session_state.logs += f"Observation: {observation}\n"
                print(f"Observation: {observation}\n")
                next_prompt = f"Observation: {observation}"
            else:
                print("No action found, ending query")
                return


known_actions = {"runcode": runcode}
prompt = f"""

You are an expert in creating advanced Interactive Streamlit Dashboards in python based on user Query and you run in a loop of Thought, Action, PAUSE, Observation.

At the end of the loop you output an Answer

Use Thought to describe your thoughts about the question you have been asked.

Use Action to run one of the actions available to you - then return PAUSE.

Observation will be the result of running those actions.



Always return just code no need of ```



Your Task is help user get result of query about below dataset,Decide based on user query to make Dashboard or Just Textual Answer.

Here is the metadata of the dataset and name of dataset is {csv_name}:

use plotly preferably.



Columns: {metadata['columns']}

Dtypes: {metadata['dtypes']}

Shape: {metadata['shape']}

You can use this metadata to generate results.



Your available actions are:

runcode



How to use actions

Action : action_name: input_to_action



if input_to_action is code then don't use ``` just write code.

Always Follow Action : action_name: input_to_action

Example session:



Question:  Give me a dashboard to visualize the people height and age



Thought: I need to run a create a dashboard where i can visualize the Subscriptions and Country data



Action: runcode: import streamlit as st

import pandas as pd

import plotly.express as px

from datetime import datetime



def load_data():

    df = pd.read_csv(f{csv_name})

    return df



df = load_data()

st.title("Height vs Age Visualization")

fig = px.scatter(df, x='age', y='height', opacity=0.6)

fig.update_layout(

    xaxis_title="Age (years)",

    yaxis_title="Height (cm)",

    title="Height vs Age Scatter Plot"

)



st.plotly_chart(fig, use_container_width=True)



PAUSE



Observation :  understand the output based its stdout and take necessary steps. 



Answer: Final Answer for User Request if its Dashboard send "Please visit link to view dashboard" or Textual Answer "Your Interpretation of Answer"

""".strip()

if "bot" not in st.session_state:
    st.session_state.bot = Agent(system_prompt=prompt, known_actions=known_actions)

st.set_page_config(layout="wide")
st.title("Customer Data Analysis")

if "logs" not in st.session_state:
    st.session_state.logs = ""

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if query := st.chat_input("Enter your query about the dataset"):
    st.session_state.messages.append({"role": "user", "content": query})
    with st.chat_message("user"):
        st.markdown(query)
    st.session_state.logs = ""
    with st.spinner("Generating response..."):
        st.session_state.bot.query(query)

    answer_match = re.search(r"Answer:", st.session_state.logs)

    if answer_match:
        answer_end_index = answer_match.end()
        subsequent_text = st.session_state.logs[answer_end_index:].strip()
    else:
        st.warning("No answer found in the generated response.")

    with st.chat_message("assistant"):
        url_pattern = r"(https?://[^\s]+)"
        url = re.findall(url_pattern, subsequent_text)
        if url:
            components.iframe(src=url[0], width=800, height=600)
            st.write(subsequent_text)
        else:
            st.success(subsequent_text)
    st.session_state.messages.append({"role": "assistant", "content": subsequent_text})

with st.sidebar:
    with st.expander("Logs"):
        st.code(st.session_state.logs)
    st.title("Dataset Metadata")
    with st.expander("Metadata"):
        st.write("Columns:", metadata["columns"])
        st.write("Dtypes:", metadata["dtypes"])
        st.write("Shape:", metadata["shape"])
    st.write("Sample Data:")
    st.write(df.head())


# TODO - Add Clear Button