|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: allura-org/Teleut-7b |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- allura-org/neon-41k |
|
model-index: |
|
- name: ckpts |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: allura-org/Teleut-7b |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
#unsloth_lora_mlp: true |
|
#unsloth_lora_qkv: true |
|
#unsloth_lora_o: true |
|
|
|
strict: false |
|
|
|
adapter: lora |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.25 |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
lora_target_linear: true |
|
peft_layers_to_transform: |
|
loraplus_lr_ratio: 16 |
|
|
|
chat_template: chatml |
|
datasets: |
|
- path: allura-org/neon-41k |
|
type: chat_template |
|
split: train |
|
field_messages: conversations |
|
message_field_role: from |
|
message_field_content: value |
|
|
|
dataset_prepared_path: last_run_prepared |
|
#val_set_size: 0.02 |
|
output_dir: ./ckpts |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
#wandb_project: teleut-7b-rp |
|
#wandb_entity: |
|
#wandb_watch: |
|
#wandb_name: |
|
#wandb_log_model: checkpoint |
|
|
|
# mlflow configuration if you're using it |
|
mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud |
|
mlflow_experiment_name: teleut-7b-rp |
|
mlflow_run_name: v1 |
|
hf_mlflow_log_artifacts: true |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 12 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 6e-5 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: unsloth |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
#deepspeed: deepspeed_configs/zero3_bf16.json |
|
|
|
warmup_steps: 25 |
|
#evals_per_epoch: 4 |
|
eval_table_size: |
|
saves_per_epoch: 25 |
|
debug: |
|
weight_decay: 0.01 |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# ckpts |
|
|
|
This model is a fine-tuned version of [allura-org/Teleut-7b](https://huggingface.co/allura-org/Teleut-7b) on the allura-org/neon-41k dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 25 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |