File size: 1,565 Bytes
9518d68 a90c47a 9518d68 a90c47a 9518d68 a90c47a 9518d68 a90c47a 9518d68 a90c47a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasificador-muchocine
results: []
datasets:
- muchocine
language:
- es
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-muchocine
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3601
- Accuracy: 0.4826
## Model description
Predict of cinema reviews.
## Intended uses & limitations
Trained as part of machine learning module at university.
## Training and evaluation data
Small project.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3546 | 0.4284 |
| 1.3676 | 2.0 | 776 | 1.2768 | 0.4723 |
| 0.9726 | 3.0 | 1164 | 1.3601 | 0.4826 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2 |