File size: 2,234 Bytes
c3a3fb4
 
 
 
 
 
 
 
 
 
 
 
aa451ab
c3a3fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- summarization
- arabic
- ar
- en
- mt5
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
base_model: eslamxm/mt5-base-finetuned-english
model-index:
- name: mt5-base-finetuned-english-finetuned-english-arabic
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-finetuned-english-finetuned-english-arabic

This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4788
- Rouge-1: 22.55
- Rouge-2: 9.84
- Rouge-l: 20.5
- Gen Len: 19.0
- Bertscore: 71.39

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 4.999         | 1.0   | 1172 | 3.9343          | 17.67   | 5.93    | 15.86   | 19.0    | 69.69     |
| 4.008         | 2.0   | 2344 | 3.6655          | 19.48   | 7.67    | 17.67   | 19.0    | 70.49     |
| 3.7463        | 3.0   | 3516 | 3.5503          | 20.47   | 8.24    | 18.6    | 19.0    | 70.86     |
| 3.5924        | 4.0   | 4688 | 3.4942          | 20.95   | 8.45    | 19.05   | 19.0    | 71.0      |
| 3.4979        | 5.0   | 5860 | 3.4788          | 21.34   | 8.75    | 19.39   | 19.0    | 71.11     |


### Framework versions

- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1