File size: 2,088 Bytes
0ff4431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
tags:
- summarization
- arabic
- am
- es
- amharic
- mt5
- Abstractive Summarization
- generated_from_trainer
model-index:
- name: mt5-base-finetuned-ar-sp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-ar-sp
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2772
- Rouge-1: 23.01
- Rouge-2: 10.41
- Rouge-l: 20.94
- Gen Len: 19.0
- Bertscore: 71.56
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 4.1968 | 1.0 | 1352 | 3.5142 | 18.69 | 6.73 | 16.97 | 19.0 | 70.3 |
| 3.6932 | 2.0 | 2704 | 3.3799 | 20.67 | 8.38 | 18.75 | 19.0 | 70.82 |
| 3.5058 | 3.0 | 4056 | 3.3184 | 20.97 | 8.58 | 19.08 | 19.0 | 71.08 |
| 3.3832 | 4.0 | 5408 | 3.2851 | 21.59 | 8.94 | 19.63 | 19.0 | 71.28 |
| 3.2994 | 5.0 | 6760 | 3.2772 | 21.84 | 9.23 | 19.85 | 19.0 | 71.34 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|