File size: 1,401 Bytes
651940a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- summarization
- ur
- seq2seq
- mbart
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: MBart-finetuned-ur-xlsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MBart-finetuned-ur-xlsum
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2663
- Rouge-1: 40.6
- Rouge-2: 18.9
- Rouge-l: 34.39
- Gen Len: 37.88
- Bertscore: 77.06
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|