File size: 3,691 Bytes
84d8fd6 16bb571 84d8fd6 16bb571 84d8fd6 16bb571 84d8fd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: 2_smtg
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 2_smtg
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9346
- Rouge1: 0.1982
- Rouge2: 0.1052
- Rougel: 0.1709
- Rougelsum: 0.1711
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 124 | 2.2154 | 0.1881 | 0.0892 | 0.1571 | 0.157 | 18.996 |
| No log | 2.0 | 248 | 2.1455 | 0.2003 | 0.1039 | 0.1695 | 0.1696 | 19.0 |
| No log | 3.0 | 372 | 2.0963 | 0.2011 | 0.1043 | 0.1706 | 0.1706 | 19.0 |
| No log | 4.0 | 496 | 2.0696 | 0.2014 | 0.105 | 0.1708 | 0.1708 | 19.0 |
| 2.4198 | 5.0 | 620 | 2.0437 | 0.1991 | 0.1016 | 0.1693 | 0.1694 | 19.0 |
| 2.4198 | 6.0 | 744 | 2.0256 | 0.1983 | 0.1016 | 0.1694 | 0.1695 | 19.0 |
| 2.4198 | 7.0 | 868 | 2.0109 | 0.2003 | 0.1044 | 0.1702 | 0.1705 | 19.0 |
| 2.4198 | 8.0 | 992 | 1.9969 | 0.1981 | 0.1025 | 0.1692 | 0.1694 | 19.0 |
| 2.2056 | 9.0 | 1116 | 1.9849 | 0.1984 | 0.103 | 0.1696 | 0.1699 | 19.0 |
| 2.2056 | 10.0 | 1240 | 1.9738 | 0.1985 | 0.1032 | 0.1702 | 0.1704 | 19.0 |
| 2.2056 | 11.0 | 1364 | 1.9661 | 0.1976 | 0.1029 | 0.1694 | 0.1697 | 19.0 |
| 2.2056 | 12.0 | 1488 | 1.9591 | 0.1986 | 0.1038 | 0.1704 | 0.1706 | 19.0 |
| 2.1209 | 13.0 | 1612 | 1.9535 | 0.1994 | 0.1045 | 0.1708 | 0.1709 | 19.0 |
| 2.1209 | 14.0 | 1736 | 1.9486 | 0.1986 | 0.1047 | 0.1706 | 0.1708 | 19.0 |
| 2.1209 | 15.0 | 1860 | 1.9440 | 0.1988 | 0.1053 | 0.1709 | 0.1711 | 19.0 |
| 2.1209 | 16.0 | 1984 | 1.9406 | 0.1983 | 0.1057 | 0.1708 | 0.1709 | 19.0 |
| 2.0754 | 17.0 | 2108 | 1.9378 | 0.199 | 0.1062 | 0.1712 | 0.1712 | 19.0 |
| 2.0754 | 18.0 | 2232 | 1.9361 | 0.1986 | 0.1057 | 0.1713 | 0.1714 | 19.0 |
| 2.0754 | 19.0 | 2356 | 1.9348 | 0.1986 | 0.1056 | 0.1712 | 0.1713 | 19.0 |
| 2.0754 | 20.0 | 2480 | 1.9346 | 0.1982 | 0.1052 | 0.1709 | 0.1711 | 19.0 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.10.0
- Tokenizers 0.13.2
|