File size: 44,566 Bytes
7cf0db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
import os
import types
from typing import Tuple

import torch
import torchvision.transforms as T
import torch.nn.functional as F
from accelerate import init_empty_weights, load_checkpoint_and_dispatch

import comfy
import folder_paths

from .model_patch import add_model_patch_option, patch_model_function_wrapper

from .brushnet.brushnet import BrushNetModel
from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel

from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens

current_directory = os.path.dirname(os.path.abspath(__file__))
brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json')

sd15_scaling_factor = 0.18215
sdxl_scaling_factor = 0.13025

ModelsToUnload = [comfy.sd1_clip.SD1ClipModel, 
                  comfy.ldm.models.autoencoder.AutoencoderKL
                 ]


class BrushNetLoader:

    @classmethod
    def INPUT_TYPES(self):
        self.inpaint_files = get_files_with_extension('inpaint')
        return {"required":
                    {    
                        "brushnet": ([file for file in self.inpaint_files], ),
                        "dtype": (['float16', 'bfloat16', 'float32', 'float64'], ),
                     },
                }

    CATEGORY = "inpaint"
    RETURN_TYPES = ("BRMODEL",)
    RETURN_NAMES = ("brushnet",)

    FUNCTION = "brushnet_loading"

    def brushnet_loading(self, brushnet, dtype):
        brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet)
        is_SDXL = False
        is_PP = False
        sd = comfy.utils.load_torch_file(brushnet_file)
        brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd)
        del sd
        if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
            is_SDXL = False
            if keys == 322:
                is_PP = False
                print('BrushNet model type: SD1.5')
            else:
                is_PP = True
                print('PowerPaint model type: SD1.5')
        elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
            print('BrushNet model type: Loading SDXL')
            is_SDXL = True
            is_PP = False
        else:
            raise Exception("Unknown BrushNet model")

        with init_empty_weights():
            if is_SDXL:
                brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
                brushnet_model = BrushNetModel.from_config(brushnet_config)
            elif is_PP:
                brushnet_config = PowerPaintModel.load_config(powerpaint_config_file)
                brushnet_model = PowerPaintModel.from_config(brushnet_config)
            else:
                brushnet_config = BrushNetModel.load_config(brushnet_config_file)
                brushnet_model = BrushNetModel.from_config(brushnet_config)

        if is_PP:
            print("PowerPaint model file:", brushnet_file)
        else:
            print("BrushNet model file:", brushnet_file)

        if dtype == 'float16':
            torch_dtype = torch.float16
        elif dtype == 'bfloat16':
            torch_dtype = torch.bfloat16
        elif dtype == 'float32':
            torch_dtype = torch.float32
        else:
            torch_dtype = torch.float64

        brushnet_model = load_checkpoint_and_dispatch(
            brushnet_model,
            brushnet_file,
            device_map="sequential",
            max_memory=None,
            offload_folder=None,
            offload_state_dict=False,
            dtype=torch_dtype,
            force_hooks=False,
        )

        if is_PP: 
            print("PowerPaint model is loaded")
        elif is_SDXL:
            print("BrushNet SDXL model is loaded")
        else:
            print("BrushNet SD1.5 model is loaded")

        return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, )


class PowerPaintCLIPLoader:

    @classmethod
    def INPUT_TYPES(self):
        self.inpaint_files = get_files_with_extension('inpaint', ['.bin'])
        self.clip_files = get_files_with_extension('clip')
        return {"required":
                    {    
                        "base": ([file for file in self.clip_files], ),
                        "powerpaint": ([file for file in self.inpaint_files], ),
                     },
                }

    CATEGORY = "inpaint"
    RETURN_TYPES = ("CLIP",)
    RETURN_NAMES = ("clip",)

    FUNCTION = "ppclip_loading"

    def ppclip_loading(self, base, powerpaint):
        base_CLIP_file = os.path.join(self.clip_files[base], base)
        pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint)

        pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file])

        print('PowerPaint base CLIP file: ', base_CLIP_file)

        pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer)
        pp_text_encoder = pp_clip.patcher.model.clip_l.transformer

        add_tokens(
            tokenizer = pp_tokenizer,
            text_encoder = pp_text_encoder,
            placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"],
            initialize_tokens = ["a", "a", "a"],
            num_vectors_per_token = 10,
        )

        pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False)

        print('PowerPaint CLIP file: ', pp_CLIP_file)

        pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer
        pp_clip.patcher.model.clip_l.transformer = pp_text_encoder

        return (pp_clip,)
    

class PowerPaint:

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {    
                        "model": ("MODEL",),
                        "vae": ("VAE", ),
                        "image": ("IMAGE",),
                        "mask": ("MASK",),
                        "powerpaint": ("BRMODEL", ),
                        "clip": ("CLIP", ),
                        "positive": ("CONDITIONING", ),
                        "negative": ("CONDITIONING", ),
                        "fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}),
                        "function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ),
                        "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
                        "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
                        "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                        "save_memory": (['none', 'auto', 'max'], ),
                     },
        }
    
    CATEGORY = "inpaint"
    RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
    RETURN_NAMES = ("model","positive","negative","latent",)

    FUNCTION = "model_update"

    def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory):

        is_SDXL, is_PP = check_compatibilty(model, powerpaint)
        if not is_PP:
            raise Exception("BrushNet model was loaded, please use BrushNet node")  

        # Make a copy of the model so that we're not patching it everywhere in the workflow.
        model = model.clone()

        # prepare image and mask
        # no batches for original image and mask
        masked_image, mask = prepare_image(image, mask)

        batch = masked_image.shape[0]
        #width = masked_image.shape[2]
        #height = masked_image.shape[1]

        if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
            scaling_factor = model.model.model_config.latent_format.scale_factor
        else:
            scaling_factor = sd15_scaling_factor

        torch_dtype = powerpaint['dtype']

        # prepare conditioning latents
        conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
        conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
        conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)

        # prepare embeddings

        if function == "object removal":
            promptA = "P_ctxt"
            promptB = "P_ctxt"
            negative_promptA = "P_obj"
            negative_promptB = "P_obj"
            print('You should add to positive prompt: "empty scene blur"')
            #positive = positive + " empty scene blur"
        elif function == "context aware":
            promptA = "P_ctxt"
            promptB = "P_ctxt"
            negative_promptA = ""
            negative_promptB = ""
            #positive = positive + " empty scene"
            print('You should add to positive prompt: "empty scene"')
        elif function == "shape guided":
            promptA = "P_shape"
            promptB = "P_ctxt"
            negative_promptA = "P_shape"
            negative_promptB = "P_ctxt"
        elif function == "image outpainting":
            promptA = "P_ctxt"
            promptB = "P_ctxt"
            negative_promptA = "P_obj"
            negative_promptB = "P_obj"
            #positive = positive + " empty scene"
            print('You should add to positive prompt: "empty scene"')
        else:
            promptA = "P_obj"
            promptB = "P_obj"
            negative_promptA = "P_obj"
            negative_promptB = "P_obj"

        tokens = clip.tokenize(promptA)
        prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)

        tokens = clip.tokenize(negative_promptA)
        negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)

        tokens = clip.tokenize(promptB)
        prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)

        tokens = clip.tokenize(negative_promptB)
        negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)

        prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
        negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)

        # unload vae and CLIPs
        del vae
        del clip
        for loaded_model in comfy.model_management.current_loaded_models:
            if type(loaded_model.model.model) in ModelsToUnload:
                comfy.model_management.current_loaded_models.remove(loaded_model)
                loaded_model.model_unload()
                del loaded_model

        # apply patch to model

        brushnet_conditioning_scale = scale
        control_guidance_start = start_at
        control_guidance_end = end_at

        if save_memory != 'none':
            powerpaint['brushnet'].set_attention_slice(save_memory)

        add_brushnet_patch(model, 
                           powerpaint['brushnet'],
                           torch_dtype,
                           conditioning_latents, 
                           (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), 
                           negative_prompt_embeds_pp, prompt_embeds_pp, 
                           None, None, None,
                           False)

        latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device)

        return (model, positive, negative, {"samples":latent},)

    
class BrushNet:

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {    
                        "model": ("MODEL",),
                        "vae": ("VAE", ),
                        "image": ("IMAGE",),
                        "mask": ("MASK",),
                        "brushnet": ("BRMODEL", ),
                        "positive": ("CONDITIONING", ),
                        "negative": ("CONDITIONING", ),
                        "scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
                        "start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
                        "end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     },
        }

    CATEGORY = "inpaint"
    RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
    RETURN_NAMES = ("model","positive","negative","latent",)

    FUNCTION = "model_update"

    def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at):

        is_SDXL, is_PP = check_compatibilty(model, brushnet)

        if is_PP:
            raise Exception("PowerPaint model was loaded, please use PowerPaint node")  

        # Make a copy of the model so that we're not patching it everywhere in the workflow.
        model = model.clone()

        # prepare image and mask
        # no batches for original image and mask
        masked_image, mask = prepare_image(image, mask)

        batch = masked_image.shape[0]
        width = masked_image.shape[2]
        height = masked_image.shape[1]

        if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
            scaling_factor = model.model.model_config.latent_format.scale_factor
        elif is_SDXL:
            scaling_factor = sdxl_scaling_factor
        else:
            scaling_factor = sd15_scaling_factor

        torch_dtype = brushnet['dtype']

        # prepare conditioning latents
        conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
        conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
        conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device)

        # unload vae
        del vae
        for loaded_model in comfy.model_management.current_loaded_models:
            if type(loaded_model.model.model) in ModelsToUnload:
                comfy.model_management.current_loaded_models.remove(loaded_model)
                loaded_model.model_unload()
                del loaded_model

        # prepare embeddings

        prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
        negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)

        max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
        if prompt_embeds.shape[1] < max_tokens:
            multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77
            prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1)
            print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds')
        if negative_prompt_embeds.shape[1] < max_tokens:
            multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77
            negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1)
            print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds')

        if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None:
            pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
        else:
            print('BrushNet: positive conditioning has not pooled_output')
            if is_SDXL:
                print('BrushNet will not produce correct results')
            pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype)

        if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None:
            negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
        else:
            print('BrushNet: negative conditioning has not pooled_output')
            if is_SDXL:
                print('BrushNet will not produce correct results')
            negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype)

        time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device)

        if not is_SDXL:
            pooled_prompt_embeds = None
            negative_pooled_prompt_embeds = None
            time_ids = None

        # apply patch to model

        brushnet_conditioning_scale = scale
        control_guidance_start = start_at
        control_guidance_end = end_at

        add_brushnet_patch(model, 
                           brushnet['brushnet'],
                           torch_dtype,
                           conditioning_latents, 
                           (brushnet_conditioning_scale, control_guidance_start, control_guidance_end), 
                           prompt_embeds, negative_prompt_embeds,
                           pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
                           False)

        latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device)

        return (model, positive, negative, {"samples":latent},)


class BlendInpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {    
                        "inpaint": ("IMAGE",),
                        "original": ("IMAGE",),
                        "mask": ("MASK",),
                        "kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
                        "sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
                     },
                "optional":
                    {
                        "origin": ("VECTOR",),
                    },
                }

    CATEGORY = "inpaint"
    RETURN_TYPES = ("IMAGE","MASK",)
    RETURN_NAMES = ("image","MASK",)

    FUNCTION = "blend_inpaint"

    def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]:

        original, mask = check_image_mask(original, mask, 'Blend Inpaint')

        if len(inpaint.shape) < 4:
            # image tensor shape should be [B, H, W, C], but batch somehow is missing
            inpaint = inpaint[None,:,:,:]

        if inpaint.shape[0] < original.shape[0]:
            print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0]))
            original= original[:inpaint.shape[0],:,:]
            mask = mask[:inpaint.shape[0],:,:]

        if inpaint.shape[0] > original.shape[0]:
            # batch over inpaint
            count = 0
            original_list = []
            mask_list = []
            origin_list = []
            while (count < inpaint.shape[0]):
                for i in range(original.shape[0]):
                    original_list.append(original[i][None,:,:,:])
                    mask_list.append(mask[i][None,:,:])
                    if origin is not None:
                        origin_list.append(origin[i][None,:])
                    count += 1
                    if count >= inpaint.shape[0]:
                        break
            original = torch.concat(original_list, dim=0)
            mask = torch.concat(mask_list, dim=0)
            if origin is not None:
                origin = torch.concat(origin_list, dim=0)

        if kernel % 2 == 0:
            kernel += 1
        transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))

        ret = []
        blurred = []
        for i in range(inpaint.shape[0]):
            if origin is None:
                blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype)
                blurred.append(blurred_mask[0])

                result = torch.nn.functional.interpolate(
                    inpaint[i][None,:,:,:].permute(0, 3, 1, 2), 
                    size=(
                        original[i].shape[0], 
                        original[i].shape[1],
                    )
                ).permute(0, 2, 3, 1).to(original.device).to(original.dtype)
            else:
                # got mask from CutForInpaint
                height, width, _ = original[i].shape
                x0 = origin[i][0].item()
                y0 = origin[i][1].item()

                if mask[i].shape[0] < height or mask[i].shape[1] < width:
                    padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1], 
                                                            y0, height-y0-mask[i].shape[0]), mode='constant', value=0)
                else:
                    padded_mask = mask[i]
                blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype)
                blurred.append(blurred_mask[0][0])

                result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1], 
                                                      y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0)
                result = result[None,:,:,:].to(original.device).to(original.dtype)

            ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None])

        return (torch.stack(ret), torch.stack(blurred), )


class CutForInpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {    
                        "image": ("IMAGE",),
                        "mask": ("MASK",),
                        "width": ("INT", {"default": 512, "min": 64, "max": 2048}),
                        "height": ("INT", {"default": 512, "min": 64, "max": 2048}),
                     },
                }

    CATEGORY = "inpaint"
    RETURN_TYPES = ("IMAGE","MASK","VECTOR",)
    RETURN_NAMES = ("image","mask","origin",)

    FUNCTION = "cut_for_inpaint"

    def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int):

        image, mask = check_image_mask(image, mask, 'BrushNet')

        ret = []
        msk = []
        org = []
        for i in range(image.shape[0]):
            x0, y0, w, h = cut_with_mask(mask[i], width, height)
            ret.append((image[i][y0:y0+h,x0:x0+w,:]))
            msk.append((mask[i][y0:y0+h,x0:x0+w]))
            org.append(torch.IntTensor([x0,y0]))

        return (torch.stack(ret), torch.stack(msk), torch.stack(org), )


#### Utility function

def get_files_with_extension(folder_name, extension=['.safetensors']):

    try:
        folders = folder_paths.get_folder_paths(folder_name)
    except:
        folders = []

    if not folders:
        folders = [os.path.join(folder_paths.models_dir, folder_name)]
    if not os.path.isdir(folders[0]):
        folders = [os.path.join(folder_paths.base_path, folder_name)]
    if not os.path.isdir(folders[0]):
        return {}
    
    filtered_folders = []
    for x in folders:
        if not os.path.isdir(x):
            continue
        the_same = False
        for y in filtered_folders:
            if os.path.samefile(x, y):
                the_same = True
                break
        if not the_same:
            filtered_folders.append(x)

    if not filtered_folders:
        return {}

    output = {}
    for x in filtered_folders:
        files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"])
        filtered_files = folder_paths.filter_files_extensions(files, extension)

        for f in filtered_files:
            output[f] = x

    return output


# get blocks from state_dict so we could know which model it is
def brushnet_blocks(sd):
    brushnet_down_block = 0
    brushnet_mid_block = 0
    brushnet_up_block = 0
    for key in sd:
        if 'brushnet_down_block' in key:
            brushnet_down_block += 1
        if 'brushnet_mid_block' in key:
            brushnet_mid_block += 1        
        if 'brushnet_up_block' in key:
            brushnet_up_block += 1
    return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd))


# Check models compatibility
def check_compatibilty(model, brushnet):
    is_SDXL = False
    is_PP = False
    if isinstance(model.model.model_config, comfy.supported_models.SD15):
        print('Base model type: SD1.5')
        is_SDXL = False
        if brushnet["SDXL"]:
            raise Exception("Base model is SD15, but BrushNet is SDXL type")  
        if brushnet["PP"]:
            is_PP = True
    elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
        print('Base model type: SDXL')
        is_SDXL = True
        if not brushnet["SDXL"]:
            raise Exception("Base model is SDXL, but BrushNet is SD15 type")    
    else:
        print('Base model type: ', type(model.model.model_config))
        raise Exception("Unsupported model type: " + str(type(model.model.model_config)))

    return (is_SDXL, is_PP)


def check_image_mask(image, mask, name):
    if len(image.shape) < 4:
        # image tensor shape should be [B, H, W, C], but batch somehow is missing
        image = image[None,:,:,:]
    
    if len(mask.shape) > 3:
        # mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be?
        # take first mask, red channel
        mask = (mask[:,:,:,0])[:,:,:]
    elif len(mask.shape) < 3:
        # mask tensor shape should be [B, H, W] but batch somehow is missing
        mask = mask[None,:,:]

    if image.shape[0] > mask.shape[0]:
        print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0]))
        if mask.shape[0] == 1: 
            print(name, "will copy the mask to fill batch")
            mask = torch.cat([mask] * image.shape[0], dim=0)
        else:
            print(name, "will add empty masks to fill batch")
            empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]])
            mask = torch.cat([mask, empty_mask], dim=0)
    elif image.shape[0] < mask.shape[0]:
        print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0]))
        mask = mask[:image.shape[0],:,:]

    return (image, mask)


# Prepare image and mask
def prepare_image(image, mask):

    image, mask = check_image_mask(image, mask, 'BrushNet')

    print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape)

    if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]:
        raise Exception("Image and mask should be the same size")
    
    # As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64)
    mask = mask.round()

    masked_image = image * (1.0 - mask[:,:,:,None])

    return (masked_image, mask)


# Get origin of the mask
def cut_with_mask(mask, width, height):
    iy, ix = (mask == 1).nonzero(as_tuple=True)

    h0, w0 = mask.shape
    
    if iy.numel() == 0:
        x_c = w0 / 2.0
        y_c = h0 / 2.0
    else:
        x_min = ix.min().item()
        x_max = ix.max().item()
        y_min = iy.min().item()
        y_max = iy.max().item()

        if x_max - x_min > width or y_max - y_min > height:
            raise Exception("Masked area is bigger than provided dimensions")

        x_c = (x_min + x_max) / 2.0
        y_c = (y_min + y_max) / 2.0
    
    width2 = width / 2.0
    height2 = height / 2.0

    if w0 <= width:
        x0 = 0
        w = w0
    else:
        x0 = max(0, x_c - width2)
        w = width
        if x0 + width > w0:
            x0 = w0 - width

    if h0 <= height:
        y0 = 0
        h = h0
    else:
        y0 = max(0, y_c - height2)
        h = height
        if y0 + height > h0:
            y0 = h0 - height

    return (int(x0), int(y0), int(w), int(h))


# Prepare conditioning_latents
@torch.inference_mode()
def get_image_latents(masked_image, mask, vae, scaling_factor):
    processed_image = masked_image.to(vae.device)
    image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
    processed_mask = 1. - mask[:,None,:,:]
    interpolated_mask = torch.nn.functional.interpolate(
                processed_mask, 
                size=(
                    image_latents.shape[-2], 
                    image_latents.shape[-1]
                )
            )
    interpolated_mask = interpolated_mask.to(image_latents.device)

    conditioning_latents = [image_latents, interpolated_mask]

    print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape)

    return conditioning_latents


# Main function where magic happens
@torch.inference_mode()
def brushnet_inference(x, timesteps, transformer_options, debug):
    if 'model_patch' not in transformer_options:
        print('BrushNet inference: there is no model_patch key in transformer_options')
        return ([], 0, [])
    mp = transformer_options['model_patch']
    if 'brushnet' not in mp:
        print('BrushNet inference: there is no brushnet key in mdel_patch')
        return ([], 0, [])
    bo = mp['brushnet']
    if 'model' not in bo:
        print('BrushNet inference: there is no model key in brushnet')
        return ([], 0, [])
    brushnet = bo['model']
    if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)):
        print('BrushNet model is not a BrushNetModel class')
        return ([], 0, [])

    torch_dtype = bo['dtype']
    cl_list = bo['latents']
    brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls']
    pe = bo['prompt_embeds']
    npe = bo['negative_prompt_embeds']
    ppe, nppe, time_ids = bo['add_embeds']

    #do_classifier_free_guidance = mp['free_guidance']
    do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1

    x = x.detach().clone()
    x = x.to(torch_dtype).to(brushnet.device)

    timesteps = timesteps.detach().clone()
    timesteps = timesteps.to(torch_dtype).to(brushnet.device)

    total_steps = mp['total_steps']
    step = mp['step']

    added_cond_kwargs = {}

    if do_classifier_free_guidance and step == 0:
        print('BrushNet inference: do_classifier_free_guidance is True')

    sub_idx = None
    if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']:
        sub_idx = transformer_options['ad_params']['sub_idxs']

    # we have batch input images
    batch = cl_list[0].shape[0]
    # we have incoming latents
    latents_incoming = x.shape[0]
    # and we already got some
    latents_got = bo['latent_id']
    if step == 0 or batch > 1:
        print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \
                % (step, batch, latents_incoming, latents_got))

    image_latents = []
    masks = []
    prompt_embeds = []
    negative_prompt_embeds = []
    pooled_prompt_embeds = []
    negative_pooled_prompt_embeds = []
    if sub_idx:
        # AnimateDiff indexes detected
        if step == 0:
            print('BrushNet inference: AnimateDiff indexes detected and applied')

        batch = len(sub_idx)

        if do_classifier_free_guidance:
            for i in sub_idx:
                image_latents.append(cl_list[0][i][None,:,:,:])
                masks.append(cl_list[1][i][None,:,:,:])
                prompt_embeds.append(pe)
                negative_prompt_embeds.append(npe)
                pooled_prompt_embeds.append(ppe)
                negative_pooled_prompt_embeds.append(nppe)
            for i in sub_idx:
                image_latents.append(cl_list[0][i][None,:,:,:])
                masks.append(cl_list[1][i][None,:,:,:])
        else:
            for i in sub_idx:
                image_latents.append(cl_list[0][i][None,:,:,:])
                masks.append(cl_list[1][i][None,:,:,:])
                prompt_embeds.append(pe)
                pooled_prompt_embeds.append(ppe)
    else:
        # do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond
        continue_batch = True
        for i in range(latents_incoming):
            number = latents_got + i
            if number < batch:
                # 1st pass, cond
                image_latents.append(cl_list[0][number][None,:,:,:])
                masks.append(cl_list[1][number][None,:,:,:])
                prompt_embeds.append(pe)
                pooled_prompt_embeds.append(ppe)
            elif do_classifier_free_guidance and number < batch * 2:
                # 2nd pass, uncond
                image_latents.append(cl_list[0][number-batch][None,:,:,:])
                masks.append(cl_list[1][number-batch][None,:,:,:])
                negative_prompt_embeds.append(npe)
                negative_pooled_prompt_embeds.append(nppe)
            else:
                # latent batch
                image_latents.append(cl_list[0][0][None,:,:,:])
                masks.append(cl_list[1][0][None,:,:,:])
                prompt_embeds.append(pe)
                pooled_prompt_embeds.append(ppe)
                latents_got = -i
                continue_batch = False

        if continue_batch:
            # we don't have full batch yet
            if do_classifier_free_guidance:
                if number < batch * 2 - 1:
                    bo['latent_id'] = number + 1
                else:
                    bo['latent_id'] = 0
            else:
                if number < batch - 1:
                    bo['latent_id'] = number + 1
                else:
                    bo['latent_id'] = 0
        else:
            bo['latent_id'] = 0

    cl = []
    for il, m in zip(image_latents, masks):
        cl.append(torch.concat([il, m], dim=1))
    cl2apply = torch.concat(cl, dim=0)

    conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device)

    prompt_embeds.extend(negative_prompt_embeds)
    prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)

    if ppe is not None:
        added_cond_kwargs = {}
        added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device)

        pooled_prompt_embeds.extend(negative_pooled_prompt_embeds)
        pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
        added_cond_kwargs['text_embeds'] = pooled_prompt_embeds
    else:
        added_cond_kwargs = None

    if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]:
        if step == 0:
            print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image')
        conditioning_latents = torch.nn.functional.interpolate(
            conditioning_latents, size=(
                x.shape[2], 
                x.shape[3],
            ), mode='bicubic',
        ).to(torch_dtype).to(brushnet.device)

    if step == 0:
        print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype)

    if debug: print('BrushNet: step =', step)

    if step < control_guidance_start or step > control_guidance_end:
        cond_scale = 0.0
    else:
        cond_scale = brushnet_conditioning_scale

    return brushnet(x,
                    encoder_hidden_states=prompt_embeds,
                    brushnet_cond=conditioning_latents,
                    timestep = timesteps,
                    conditioning_scale=cond_scale,
                    guess_mode=False,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                    debug=debug,
                )


# This is main patch function
def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents, 
                       controls, 
                       prompt_embeds, negative_prompt_embeds,
                       pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
                       debug):
    
    is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL)

    if is_SDXL:
        input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
                        [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
                        [4, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.attention.SpatialTransformer],
                        [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
                        [7, comfy.ldm.modules.attention.SpatialTransformer],
                        [8, comfy.ldm.modules.attention.SpatialTransformer]]
        middle_block  = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
        output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer],
                        [1, comfy.ldm.modules.attention.SpatialTransformer],
                        [2, comfy.ldm.modules.attention.SpatialTransformer],
                        [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
                        [3, comfy.ldm.modules.attention.SpatialTransformer],
                        [4, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
                        [6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
    else:
        input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
                        [1, comfy.ldm.modules.attention.SpatialTransformer],
                        [2, comfy.ldm.modules.attention.SpatialTransformer],
                        [3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
                        [4, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.attention.SpatialTransformer],
                        [6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
                        [7, comfy.ldm.modules.attention.SpatialTransformer],
                        [8, comfy.ldm.modules.attention.SpatialTransformer],
                        [9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
                        [10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
        middle_block  = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
        output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
                        [2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
                        [3, comfy.ldm.modules.attention.SpatialTransformer],
                        [4, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.attention.SpatialTransformer],
                        [5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
                        [6, comfy.ldm.modules.attention.SpatialTransformer],
                        [7, comfy.ldm.modules.attention.SpatialTransformer],
                        [8, comfy.ldm.modules.attention.SpatialTransformer],
                        [8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
                        [9, comfy.ldm.modules.attention.SpatialTransformer],
                        [10, comfy.ldm.modules.attention.SpatialTransformer],
                        [11, comfy.ldm.modules.attention.SpatialTransformer]]

    def last_layer_index(block, tp):
        layer_list = []
        for layer in block:
            layer_list.append(type(layer))
        layer_list.reverse()
        if tp not in layer_list:
            return -1, layer_list.reverse()
        return len(layer_list) - 1 - layer_list.index(tp), layer_list

    def brushnet_forward(model, x, timesteps, transformer_options, control):
        if 'brushnet' not in transformer_options['model_patch']:
            input_samples = []
            mid_sample = 0
            output_samples = []
        else:    
            # brushnet inference
            input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug)

        # give additional samples to blocks
        for i, tp in input_blocks:
            idx, layer_list = last_layer_index(model.input_blocks[i], tp)
            if idx < 0:
                print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list)
                continue
            model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0

        idx, layer_list = last_layer_index(model.middle_block, middle_block[1])
        if idx < 0:
            print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list)
        model.middle_block[idx].add_sample_after = mid_sample

        for i, tp in output_blocks:
            idx, layer_list = last_layer_index(model.output_blocks[i], tp)
            if idx < 0:
                print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list)
                continue
            model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0

    patch_model_function_wrapper(model, brushnet_forward)

    to = add_model_patch_option(model)
    mp = to['model_patch']
    if 'brushnet' not in mp:
        mp['brushnet'] = {}
    bo = mp['brushnet']

    bo['model'] = brushnet
    bo['dtype'] = torch_dtype
    bo['latents'] = conditioning_latents
    bo['controls'] = controls
    bo['prompt_embeds'] = prompt_embeds
    bo['negative_prompt_embeds'] = negative_prompt_embeds
    bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids)
    bo['latent_id'] = 0

    # patch layers `forward` so we can apply brushnet
    def forward_patched_by_brushnet(self, x, *args, **kwargs):
        h = self.original_forward(x, *args, **kwargs)
        if hasattr(self, 'add_sample_after') and type(self):
            to_add = self.add_sample_after
            if torch.is_tensor(to_add):
                # interpolate due to RAUNet
                if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]:
                    to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic')                  
                h += to_add.to(h.dtype).to(h.device)
            else:
                h += self.add_sample_after
            self.add_sample_after = 0
        return h

    for i, block in enumerate(model.model.diffusion_model.input_blocks):
        for j, layer in enumerate(block):
            if not hasattr(layer, 'original_forward'):
                layer.original_forward = layer.forward
            layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
            layer.add_sample_after = 0

    for j, layer in enumerate(model.model.diffusion_model.middle_block):
        if not hasattr(layer, 'original_forward'):
            layer.original_forward = layer.forward
        layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
        layer.add_sample_after = 0

    for i, block in enumerate(model.model.diffusion_model.output_blocks):
        for j, layer in enumerate(block):
            if not hasattr(layer, 'original_forward'):
                layer.original_forward = layer.forward
            layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
            layer.add_sample_after = 0