File size: 44,566 Bytes
7cf0db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
import os
import types
from typing import Tuple
import torch
import torchvision.transforms as T
import torch.nn.functional as F
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import comfy
import folder_paths
from .model_patch import add_model_patch_option, patch_model_function_wrapper
from .brushnet.brushnet import BrushNetModel
from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel
from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens
current_directory = os.path.dirname(os.path.abspath(__file__))
brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json')
sd15_scaling_factor = 0.18215
sdxl_scaling_factor = 0.13025
ModelsToUnload = [comfy.sd1_clip.SD1ClipModel,
comfy.ldm.models.autoencoder.AutoencoderKL
]
class BrushNetLoader:
@classmethod
def INPUT_TYPES(self):
self.inpaint_files = get_files_with_extension('inpaint')
return {"required":
{
"brushnet": ([file for file in self.inpaint_files], ),
"dtype": (['float16', 'bfloat16', 'float32', 'float64'], ),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("BRMODEL",)
RETURN_NAMES = ("brushnet",)
FUNCTION = "brushnet_loading"
def brushnet_loading(self, brushnet, dtype):
brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet)
is_SDXL = False
is_PP = False
sd = comfy.utils.load_torch_file(brushnet_file)
brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd)
del sd
if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
is_SDXL = False
if keys == 322:
is_PP = False
print('BrushNet model type: SD1.5')
else:
is_PP = True
print('PowerPaint model type: SD1.5')
elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
print('BrushNet model type: Loading SDXL')
is_SDXL = True
is_PP = False
else:
raise Exception("Unknown BrushNet model")
with init_empty_weights():
if is_SDXL:
brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
brushnet_model = BrushNetModel.from_config(brushnet_config)
elif is_PP:
brushnet_config = PowerPaintModel.load_config(powerpaint_config_file)
brushnet_model = PowerPaintModel.from_config(brushnet_config)
else:
brushnet_config = BrushNetModel.load_config(brushnet_config_file)
brushnet_model = BrushNetModel.from_config(brushnet_config)
if is_PP:
print("PowerPaint model file:", brushnet_file)
else:
print("BrushNet model file:", brushnet_file)
if dtype == 'float16':
torch_dtype = torch.float16
elif dtype == 'bfloat16':
torch_dtype = torch.bfloat16
elif dtype == 'float32':
torch_dtype = torch.float32
else:
torch_dtype = torch.float64
brushnet_model = load_checkpoint_and_dispatch(
brushnet_model,
brushnet_file,
device_map="sequential",
max_memory=None,
offload_folder=None,
offload_state_dict=False,
dtype=torch_dtype,
force_hooks=False,
)
if is_PP:
print("PowerPaint model is loaded")
elif is_SDXL:
print("BrushNet SDXL model is loaded")
else:
print("BrushNet SD1.5 model is loaded")
return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, )
class PowerPaintCLIPLoader:
@classmethod
def INPUT_TYPES(self):
self.inpaint_files = get_files_with_extension('inpaint', ['.bin'])
self.clip_files = get_files_with_extension('clip')
return {"required":
{
"base": ([file for file in self.clip_files], ),
"powerpaint": ([file for file in self.inpaint_files], ),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("CLIP",)
RETURN_NAMES = ("clip",)
FUNCTION = "ppclip_loading"
def ppclip_loading(self, base, powerpaint):
base_CLIP_file = os.path.join(self.clip_files[base], base)
pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint)
pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file])
print('PowerPaint base CLIP file: ', base_CLIP_file)
pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer)
pp_text_encoder = pp_clip.patcher.model.clip_l.transformer
add_tokens(
tokenizer = pp_tokenizer,
text_encoder = pp_text_encoder,
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"],
initialize_tokens = ["a", "a", "a"],
num_vectors_per_token = 10,
)
pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False)
print('PowerPaint CLIP file: ', pp_CLIP_file)
pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer
pp_clip.patcher.model.clip_l.transformer = pp_text_encoder
return (pp_clip,)
class PowerPaint:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": ("MODEL",),
"vae": ("VAE", ),
"image": ("IMAGE",),
"mask": ("MASK",),
"powerpaint": ("BRMODEL", ),
"clip": ("CLIP", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}),
"function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ),
"scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
"start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"save_memory": (['none', 'auto', 'max'], ),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
RETURN_NAMES = ("model","positive","negative","latent",)
FUNCTION = "model_update"
def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory):
is_SDXL, is_PP = check_compatibilty(model, powerpaint)
if not is_PP:
raise Exception("BrushNet model was loaded, please use BrushNet node")
# Make a copy of the model so that we're not patching it everywhere in the workflow.
model = model.clone()
# prepare image and mask
# no batches for original image and mask
masked_image, mask = prepare_image(image, mask)
batch = masked_image.shape[0]
#width = masked_image.shape[2]
#height = masked_image.shape[1]
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
scaling_factor = model.model.model_config.latent_format.scale_factor
else:
scaling_factor = sd15_scaling_factor
torch_dtype = powerpaint['dtype']
# prepare conditioning latents
conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
# prepare embeddings
if function == "object removal":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
print('You should add to positive prompt: "empty scene blur"')
#positive = positive + " empty scene blur"
elif function == "context aware":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = ""
negative_promptB = ""
#positive = positive + " empty scene"
print('You should add to positive prompt: "empty scene"')
elif function == "shape guided":
promptA = "P_shape"
promptB = "P_ctxt"
negative_promptA = "P_shape"
negative_promptB = "P_ctxt"
elif function == "image outpainting":
promptA = "P_ctxt"
promptB = "P_ctxt"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
#positive = positive + " empty scene"
print('You should add to positive prompt: "empty scene"')
else:
promptA = "P_obj"
promptB = "P_obj"
negative_promptA = "P_obj"
negative_promptB = "P_obj"
tokens = clip.tokenize(promptA)
prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
tokens = clip.tokenize(negative_promptA)
negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
tokens = clip.tokenize(promptB)
prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
tokens = clip.tokenize(negative_promptB)
negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
# unload vae and CLIPs
del vae
del clip
for loaded_model in comfy.model_management.current_loaded_models:
if type(loaded_model.model.model) in ModelsToUnload:
comfy.model_management.current_loaded_models.remove(loaded_model)
loaded_model.model_unload()
del loaded_model
# apply patch to model
brushnet_conditioning_scale = scale
control_guidance_start = start_at
control_guidance_end = end_at
if save_memory != 'none':
powerpaint['brushnet'].set_attention_slice(save_memory)
add_brushnet_patch(model,
powerpaint['brushnet'],
torch_dtype,
conditioning_latents,
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
negative_prompt_embeds_pp, prompt_embeds_pp,
None, None, None,
False)
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device)
return (model, positive, negative, {"samples":latent},)
class BrushNet:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": ("MODEL",),
"vae": ("VAE", ),
"image": ("IMAGE",),
"mask": ("MASK",),
"brushnet": ("BRMODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
"start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
RETURN_NAMES = ("model","positive","negative","latent",)
FUNCTION = "model_update"
def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at):
is_SDXL, is_PP = check_compatibilty(model, brushnet)
if is_PP:
raise Exception("PowerPaint model was loaded, please use PowerPaint node")
# Make a copy of the model so that we're not patching it everywhere in the workflow.
model = model.clone()
# prepare image and mask
# no batches for original image and mask
masked_image, mask = prepare_image(image, mask)
batch = masked_image.shape[0]
width = masked_image.shape[2]
height = masked_image.shape[1]
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
scaling_factor = model.model.model_config.latent_format.scale_factor
elif is_SDXL:
scaling_factor = sdxl_scaling_factor
else:
scaling_factor = sd15_scaling_factor
torch_dtype = brushnet['dtype']
# prepare conditioning latents
conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
# unload vae
del vae
for loaded_model in comfy.model_management.current_loaded_models:
if type(loaded_model.model.model) in ModelsToUnload:
comfy.model_management.current_loaded_models.remove(loaded_model)
loaded_model.model_unload()
del loaded_model
# prepare embeddings
prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
if prompt_embeds.shape[1] < max_tokens:
multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77
prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1)
print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds')
if negative_prompt_embeds.shape[1] < max_tokens:
multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77
negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1)
print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds')
if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None:
pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
else:
print('BrushNet: positive conditioning has not pooled_output')
if is_SDXL:
print('BrushNet will not produce correct results')
pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None:
negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
else:
print('BrushNet: negative conditioning has not pooled_output')
if is_SDXL:
print('BrushNet will not produce correct results')
negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device)
if not is_SDXL:
pooled_prompt_embeds = None
negative_pooled_prompt_embeds = None
time_ids = None
# apply patch to model
brushnet_conditioning_scale = scale
control_guidance_start = start_at
control_guidance_end = end_at
add_brushnet_patch(model,
brushnet['brushnet'],
torch_dtype,
conditioning_latents,
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
prompt_embeds, negative_prompt_embeds,
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
False)
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device)
return (model, positive, negative, {"samples":latent},)
class BlendInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"inpaint": ("IMAGE",),
"original": ("IMAGE",),
"mask": ("MASK",),
"kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
"sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
},
"optional":
{
"origin": ("VECTOR",),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("IMAGE","MASK",)
RETURN_NAMES = ("image","MASK",)
FUNCTION = "blend_inpaint"
def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]:
original, mask = check_image_mask(original, mask, 'Blend Inpaint')
if len(inpaint.shape) < 4:
# image tensor shape should be [B, H, W, C], but batch somehow is missing
inpaint = inpaint[None,:,:,:]
if inpaint.shape[0] < original.shape[0]:
print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0]))
original= original[:inpaint.shape[0],:,:]
mask = mask[:inpaint.shape[0],:,:]
if inpaint.shape[0] > original.shape[0]:
# batch over inpaint
count = 0
original_list = []
mask_list = []
origin_list = []
while (count < inpaint.shape[0]):
for i in range(original.shape[0]):
original_list.append(original[i][None,:,:,:])
mask_list.append(mask[i][None,:,:])
if origin is not None:
origin_list.append(origin[i][None,:])
count += 1
if count >= inpaint.shape[0]:
break
original = torch.concat(original_list, dim=0)
mask = torch.concat(mask_list, dim=0)
if origin is not None:
origin = torch.concat(origin_list, dim=0)
if kernel % 2 == 0:
kernel += 1
transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))
ret = []
blurred = []
for i in range(inpaint.shape[0]):
if origin is None:
blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype)
blurred.append(blurred_mask[0])
result = torch.nn.functional.interpolate(
inpaint[i][None,:,:,:].permute(0, 3, 1, 2),
size=(
original[i].shape[0],
original[i].shape[1],
)
).permute(0, 2, 3, 1).to(original.device).to(original.dtype)
else:
# got mask from CutForInpaint
height, width, _ = original[i].shape
x0 = origin[i][0].item()
y0 = origin[i][1].item()
if mask[i].shape[0] < height or mask[i].shape[1] < width:
padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1],
y0, height-y0-mask[i].shape[0]), mode='constant', value=0)
else:
padded_mask = mask[i]
blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype)
blurred.append(blurred_mask[0][0])
result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1],
y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0)
result = result[None,:,:,:].to(original.device).to(original.dtype)
ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None])
return (torch.stack(ret), torch.stack(blurred), )
class CutForInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"image": ("IMAGE",),
"mask": ("MASK",),
"width": ("INT", {"default": 512, "min": 64, "max": 2048}),
"height": ("INT", {"default": 512, "min": 64, "max": 2048}),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("IMAGE","MASK","VECTOR",)
RETURN_NAMES = ("image","mask","origin",)
FUNCTION = "cut_for_inpaint"
def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int):
image, mask = check_image_mask(image, mask, 'BrushNet')
ret = []
msk = []
org = []
for i in range(image.shape[0]):
x0, y0, w, h = cut_with_mask(mask[i], width, height)
ret.append((image[i][y0:y0+h,x0:x0+w,:]))
msk.append((mask[i][y0:y0+h,x0:x0+w]))
org.append(torch.IntTensor([x0,y0]))
return (torch.stack(ret), torch.stack(msk), torch.stack(org), )
#### Utility function
def get_files_with_extension(folder_name, extension=['.safetensors']):
try:
folders = folder_paths.get_folder_paths(folder_name)
except:
folders = []
if not folders:
folders = [os.path.join(folder_paths.models_dir, folder_name)]
if not os.path.isdir(folders[0]):
folders = [os.path.join(folder_paths.base_path, folder_name)]
if not os.path.isdir(folders[0]):
return {}
filtered_folders = []
for x in folders:
if not os.path.isdir(x):
continue
the_same = False
for y in filtered_folders:
if os.path.samefile(x, y):
the_same = True
break
if not the_same:
filtered_folders.append(x)
if not filtered_folders:
return {}
output = {}
for x in filtered_folders:
files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"])
filtered_files = folder_paths.filter_files_extensions(files, extension)
for f in filtered_files:
output[f] = x
return output
# get blocks from state_dict so we could know which model it is
def brushnet_blocks(sd):
brushnet_down_block = 0
brushnet_mid_block = 0
brushnet_up_block = 0
for key in sd:
if 'brushnet_down_block' in key:
brushnet_down_block += 1
if 'brushnet_mid_block' in key:
brushnet_mid_block += 1
if 'brushnet_up_block' in key:
brushnet_up_block += 1
return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd))
# Check models compatibility
def check_compatibilty(model, brushnet):
is_SDXL = False
is_PP = False
if isinstance(model.model.model_config, comfy.supported_models.SD15):
print('Base model type: SD1.5')
is_SDXL = False
if brushnet["SDXL"]:
raise Exception("Base model is SD15, but BrushNet is SDXL type")
if brushnet["PP"]:
is_PP = True
elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
print('Base model type: SDXL')
is_SDXL = True
if not brushnet["SDXL"]:
raise Exception("Base model is SDXL, but BrushNet is SD15 type")
else:
print('Base model type: ', type(model.model.model_config))
raise Exception("Unsupported model type: " + str(type(model.model.model_config)))
return (is_SDXL, is_PP)
def check_image_mask(image, mask, name):
if len(image.shape) < 4:
# image tensor shape should be [B, H, W, C], but batch somehow is missing
image = image[None,:,:,:]
if len(mask.shape) > 3:
# mask tensor shape should be [B, H, W] but we get [B, H, W, C], image may be?
# take first mask, red channel
mask = (mask[:,:,:,0])[:,:,:]
elif len(mask.shape) < 3:
# mask tensor shape should be [B, H, W] but batch somehow is missing
mask = mask[None,:,:]
if image.shape[0] > mask.shape[0]:
print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0]))
if mask.shape[0] == 1:
print(name, "will copy the mask to fill batch")
mask = torch.cat([mask] * image.shape[0], dim=0)
else:
print(name, "will add empty masks to fill batch")
empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]])
mask = torch.cat([mask, empty_mask], dim=0)
elif image.shape[0] < mask.shape[0]:
print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0]))
mask = mask[:image.shape[0],:,:]
return (image, mask)
# Prepare image and mask
def prepare_image(image, mask):
image, mask = check_image_mask(image, mask, 'BrushNet')
print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape)
if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]:
raise Exception("Image and mask should be the same size")
# As a suggestion of inferno46n2 (https://github.com/nullquant/ComfyUI-BrushNet/issues/64)
mask = mask.round()
masked_image = image * (1.0 - mask[:,:,:,None])
return (masked_image, mask)
# Get origin of the mask
def cut_with_mask(mask, width, height):
iy, ix = (mask == 1).nonzero(as_tuple=True)
h0, w0 = mask.shape
if iy.numel() == 0:
x_c = w0 / 2.0
y_c = h0 / 2.0
else:
x_min = ix.min().item()
x_max = ix.max().item()
y_min = iy.min().item()
y_max = iy.max().item()
if x_max - x_min > width or y_max - y_min > height:
raise Exception("Masked area is bigger than provided dimensions")
x_c = (x_min + x_max) / 2.0
y_c = (y_min + y_max) / 2.0
width2 = width / 2.0
height2 = height / 2.0
if w0 <= width:
x0 = 0
w = w0
else:
x0 = max(0, x_c - width2)
w = width
if x0 + width > w0:
x0 = w0 - width
if h0 <= height:
y0 = 0
h = h0
else:
y0 = max(0, y_c - height2)
h = height
if y0 + height > h0:
y0 = h0 - height
return (int(x0), int(y0), int(w), int(h))
# Prepare conditioning_latents
@torch.inference_mode()
def get_image_latents(masked_image, mask, vae, scaling_factor):
processed_image = masked_image.to(vae.device)
image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
processed_mask = 1. - mask[:,None,:,:]
interpolated_mask = torch.nn.functional.interpolate(
processed_mask,
size=(
image_latents.shape[-2],
image_latents.shape[-1]
)
)
interpolated_mask = interpolated_mask.to(image_latents.device)
conditioning_latents = [image_latents, interpolated_mask]
print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape)
return conditioning_latents
# Main function where magic happens
@torch.inference_mode()
def brushnet_inference(x, timesteps, transformer_options, debug):
if 'model_patch' not in transformer_options:
print('BrushNet inference: there is no model_patch key in transformer_options')
return ([], 0, [])
mp = transformer_options['model_patch']
if 'brushnet' not in mp:
print('BrushNet inference: there is no brushnet key in mdel_patch')
return ([], 0, [])
bo = mp['brushnet']
if 'model' not in bo:
print('BrushNet inference: there is no model key in brushnet')
return ([], 0, [])
brushnet = bo['model']
if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)):
print('BrushNet model is not a BrushNetModel class')
return ([], 0, [])
torch_dtype = bo['dtype']
cl_list = bo['latents']
brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls']
pe = bo['prompt_embeds']
npe = bo['negative_prompt_embeds']
ppe, nppe, time_ids = bo['add_embeds']
#do_classifier_free_guidance = mp['free_guidance']
do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1
x = x.detach().clone()
x = x.to(torch_dtype).to(brushnet.device)
timesteps = timesteps.detach().clone()
timesteps = timesteps.to(torch_dtype).to(brushnet.device)
total_steps = mp['total_steps']
step = mp['step']
added_cond_kwargs = {}
if do_classifier_free_guidance and step == 0:
print('BrushNet inference: do_classifier_free_guidance is True')
sub_idx = None
if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']:
sub_idx = transformer_options['ad_params']['sub_idxs']
# we have batch input images
batch = cl_list[0].shape[0]
# we have incoming latents
latents_incoming = x.shape[0]
# and we already got some
latents_got = bo['latent_id']
if step == 0 or batch > 1:
print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \
% (step, batch, latents_incoming, latents_got))
image_latents = []
masks = []
prompt_embeds = []
negative_prompt_embeds = []
pooled_prompt_embeds = []
negative_pooled_prompt_embeds = []
if sub_idx:
# AnimateDiff indexes detected
if step == 0:
print('BrushNet inference: AnimateDiff indexes detected and applied')
batch = len(sub_idx)
if do_classifier_free_guidance:
for i in sub_idx:
image_latents.append(cl_list[0][i][None,:,:,:])
masks.append(cl_list[1][i][None,:,:,:])
prompt_embeds.append(pe)
negative_prompt_embeds.append(npe)
pooled_prompt_embeds.append(ppe)
negative_pooled_prompt_embeds.append(nppe)
for i in sub_idx:
image_latents.append(cl_list[0][i][None,:,:,:])
masks.append(cl_list[1][i][None,:,:,:])
else:
for i in sub_idx:
image_latents.append(cl_list[0][i][None,:,:,:])
masks.append(cl_list[1][i][None,:,:,:])
prompt_embeds.append(pe)
pooled_prompt_embeds.append(ppe)
else:
# do_classifier_free_guidance = 2 passes, 1st pass is cond, 2nd is uncond
continue_batch = True
for i in range(latents_incoming):
number = latents_got + i
if number < batch:
# 1st pass, cond
image_latents.append(cl_list[0][number][None,:,:,:])
masks.append(cl_list[1][number][None,:,:,:])
prompt_embeds.append(pe)
pooled_prompt_embeds.append(ppe)
elif do_classifier_free_guidance and number < batch * 2:
# 2nd pass, uncond
image_latents.append(cl_list[0][number-batch][None,:,:,:])
masks.append(cl_list[1][number-batch][None,:,:,:])
negative_prompt_embeds.append(npe)
negative_pooled_prompt_embeds.append(nppe)
else:
# latent batch
image_latents.append(cl_list[0][0][None,:,:,:])
masks.append(cl_list[1][0][None,:,:,:])
prompt_embeds.append(pe)
pooled_prompt_embeds.append(ppe)
latents_got = -i
continue_batch = False
if continue_batch:
# we don't have full batch yet
if do_classifier_free_guidance:
if number < batch * 2 - 1:
bo['latent_id'] = number + 1
else:
bo['latent_id'] = 0
else:
if number < batch - 1:
bo['latent_id'] = number + 1
else:
bo['latent_id'] = 0
else:
bo['latent_id'] = 0
cl = []
for il, m in zip(image_latents, masks):
cl.append(torch.concat([il, m], dim=1))
cl2apply = torch.concat(cl, dim=0)
conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device)
prompt_embeds.extend(negative_prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
if ppe is not None:
added_cond_kwargs = {}
added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device)
pooled_prompt_embeds.extend(negative_pooled_prompt_embeds)
pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
added_cond_kwargs['text_embeds'] = pooled_prompt_embeds
else:
added_cond_kwargs = None
if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]:
if step == 0:
print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image')
conditioning_latents = torch.nn.functional.interpolate(
conditioning_latents, size=(
x.shape[2],
x.shape[3],
), mode='bicubic',
).to(torch_dtype).to(brushnet.device)
if step == 0:
print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype)
if debug: print('BrushNet: step =', step)
if step < control_guidance_start or step > control_guidance_end:
cond_scale = 0.0
else:
cond_scale = brushnet_conditioning_scale
return brushnet(x,
encoder_hidden_states=prompt_embeds,
brushnet_cond=conditioning_latents,
timestep = timesteps,
conditioning_scale=cond_scale,
guess_mode=False,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
debug=debug,
)
# This is main patch function
def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents,
controls,
prompt_embeds, negative_prompt_embeds,
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
debug):
is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL)
if is_SDXL:
input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
[4, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.attention.SpatialTransformer],
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
[7, comfy.ldm.modules.attention.SpatialTransformer],
[8, comfy.ldm.modules.attention.SpatialTransformer]]
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer],
[1, comfy.ldm.modules.attention.SpatialTransformer],
[2, comfy.ldm.modules.attention.SpatialTransformer],
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
[3, comfy.ldm.modules.attention.SpatialTransformer],
[4, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
[6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
else:
input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
[1, comfy.ldm.modules.attention.SpatialTransformer],
[2, comfy.ldm.modules.attention.SpatialTransformer],
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
[4, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.attention.SpatialTransformer],
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
[7, comfy.ldm.modules.attention.SpatialTransformer],
[8, comfy.ldm.modules.attention.SpatialTransformer],
[9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
[10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
[3, comfy.ldm.modules.attention.SpatialTransformer],
[4, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.attention.SpatialTransformer],
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
[6, comfy.ldm.modules.attention.SpatialTransformer],
[7, comfy.ldm.modules.attention.SpatialTransformer],
[8, comfy.ldm.modules.attention.SpatialTransformer],
[8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
[9, comfy.ldm.modules.attention.SpatialTransformer],
[10, comfy.ldm.modules.attention.SpatialTransformer],
[11, comfy.ldm.modules.attention.SpatialTransformer]]
def last_layer_index(block, tp):
layer_list = []
for layer in block:
layer_list.append(type(layer))
layer_list.reverse()
if tp not in layer_list:
return -1, layer_list.reverse()
return len(layer_list) - 1 - layer_list.index(tp), layer_list
def brushnet_forward(model, x, timesteps, transformer_options, control):
if 'brushnet' not in transformer_options['model_patch']:
input_samples = []
mid_sample = 0
output_samples = []
else:
# brushnet inference
input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug)
# give additional samples to blocks
for i, tp in input_blocks:
idx, layer_list = last_layer_index(model.input_blocks[i], tp)
if idx < 0:
print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list)
continue
model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0
idx, layer_list = last_layer_index(model.middle_block, middle_block[1])
if idx < 0:
print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list)
model.middle_block[idx].add_sample_after = mid_sample
for i, tp in output_blocks:
idx, layer_list = last_layer_index(model.output_blocks[i], tp)
if idx < 0:
print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list)
continue
model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0
patch_model_function_wrapper(model, brushnet_forward)
to = add_model_patch_option(model)
mp = to['model_patch']
if 'brushnet' not in mp:
mp['brushnet'] = {}
bo = mp['brushnet']
bo['model'] = brushnet
bo['dtype'] = torch_dtype
bo['latents'] = conditioning_latents
bo['controls'] = controls
bo['prompt_embeds'] = prompt_embeds
bo['negative_prompt_embeds'] = negative_prompt_embeds
bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids)
bo['latent_id'] = 0
# patch layers `forward` so we can apply brushnet
def forward_patched_by_brushnet(self, x, *args, **kwargs):
h = self.original_forward(x, *args, **kwargs)
if hasattr(self, 'add_sample_after') and type(self):
to_add = self.add_sample_after
if torch.is_tensor(to_add):
# interpolate due to RAUNet
if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]:
to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic')
h += to_add.to(h.dtype).to(h.device)
else:
h += self.add_sample_after
self.add_sample_after = 0
return h
for i, block in enumerate(model.model.diffusion_model.input_blocks):
for j, layer in enumerate(block):
if not hasattr(layer, 'original_forward'):
layer.original_forward = layer.forward
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
layer.add_sample_after = 0
for j, layer in enumerate(model.model.diffusion_model.middle_block):
if not hasattr(layer, 'original_forward'):
layer.original_forward = layer.forward
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
layer.add_sample_after = 0
for i, block in enumerate(model.model.diffusion_model.output_blocks):
for j, layer in enumerate(block):
if not hasattr(layer, 'original_forward'):
layer.original_forward = layer.forward
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
layer.add_sample_after = 0
|