llama-chat / README.md
erfanzar's picture
Update README.md
22731d4
|
raw
history blame
2.85 kB
---
license: apache-2.0
datasets:
- OpenAssistant/oasst1
- EleutherAI/pile
language:
- en
- es
- ar
- fr
- fa
metrics:
- accuracy
- bleu
pipeline_tag: text-generation
tags:
- code
---
this model uses Task classification and the conversation is between USER and Answer or AI
# NOTE ⚠️
THE JAX/FLAX version of model is available both for training and usage And This model support context length of 3300
this model support run with OST_UI so heres how to run it with just one command
```shell
git clone https://github.com/erfanzar/OST-OpenSourceTransformers
cd OST-OpenSourceTransformers/
python3 OST_UI/app.py --model_id='erfanzar/chatLGeM' --num_gpus <NUMBER OF GPUS TO USE>
```
## Examples πŸš€
```text
</s><|prompter|> TEXT </s><|assistant|>
```
or Just Simply Open [GOOGLE COLAB πŸš€πŸš€](https://colab.research.google.com/drive/1nWS_FhWIDH3-g56F3FbWCIYi0ngVdWHx?usp=sharing)
### Generate Method to get res Text by Text
```python
def generate(model_,input_ids_,tokeinzer_,max_length:int=3300,temperature :float= 0.2,eos_token_id:int=2):
with torch.no_grad():
before_start = len(input_ids_[0])+1
for _ in range(max_length):
out = model_(
input_ids=input_ids_,
return_dict=True,
)
opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature)
Camila = torch.multinomial(opa,1)
input_ids_ = torch.cat([input_ids_,Camila],-1)
clear_output(wait=True)
print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='')
if Camila[0].item() == eos_token_id:
break
yield tokeinzer_.decode(Camila[0],skip_special_tokens=True)
return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}"
```
### Result
```python
import socket
import time
def check_internet_connection():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("www.google.com", 80))
print("Internet connection is active.")
except:
print("Internet connection is not active.")
if __name__ == "__main__":
check_internet_connection()
```
# Using Model in OST
### LGeM πŸš€
- what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)
- it's Decoder Only
- built-in Pytorch and Jax
- you can simply import models like (In EasyDeL or OST Library)
```python
# Pytorch
from modules import LGeMForCausalLM
# Jax
from modules import FlaxLGeMForCausalLM
```
- and Training code is available at jax_train.py (check source)
- training parameters
- - learning rate 2e-5
- - Optimizer AdamW
- - batch 32
- - TPU POD
- - Train Time 50 hours
- - budget 500 $
``` shell
python3 LGeM-train.py
```