leaderboard-pr-bot's picture
Adding Evaluation Results
ce5814d verified
|
raw
history blame
4.88 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- mlabonne/NeuralBeagle14-7B
base_model:
- mlabonne/NeuralBeagle14-7B
- mlabonne/NeuralBeagle14-7B
model-index:
- name: FrankenBeagle-SmallOverlap-test
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.71
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.69
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.85
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=eren23/FrankenBeagle-SmallOverlap-test
name: Open LLM Leaderboard
---
# FrankenBeagle-SmallOverlap-test
FrankenBeagle-SmallOverlap-test is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 24]
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [18, 32]
merge_method: passthrough
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "eren23/FrankenBeagle-SmallOverlap-test"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_eren23__FrankenBeagle-SmallOverlap-test)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.30|
|AI2 Reasoning Challenge (25-Shot)|72.01|
|HellaSwag (10-Shot) |88.16|
|MMLU (5-Shot) |64.71|
|TruthfulQA (0-shot) |69.69|
|Winogrande (5-shot) |81.85|
|GSM8k (5-shot) |63.38|