File size: 2,668 Bytes
e7db354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: stt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stt
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4300
- Wer Ortho: 21.3276
- Wer: 14.7093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.4135 | 0.6180 | 500 | 0.4069 | 29.9115 | 21.6319 |
| 0.2036 | 1.2361 | 1000 | 0.3584 | 25.8738 | 18.3552 |
| 0.1899 | 1.8541 | 1500 | 0.3390 | 24.0940 | 16.4814 |
| 0.0978 | 2.4722 | 2000 | 0.3406 | 24.1957 | 16.8982 |
| 0.0584 | 3.0902 | 2500 | 0.3589 | 22.7718 | 15.9189 |
| 0.0457 | 3.7083 | 3000 | 0.3660 | 23.3075 | 15.8580 |
| 0.0203 | 4.3263 | 3500 | 0.3762 | 22.9108 | 15.7394 |
| 0.0193 | 4.9444 | 4000 | 0.3683 | 22.0192 | 15.2616 |
| 0.0073 | 5.5624 | 4500 | 0.3926 | 22.5447 | 15.5801 |
| 0.0022 | 6.1805 | 5000 | 0.4065 | 21.5649 | 14.9092 |
| 0.0022 | 6.7985 | 5500 | 0.4080 | 21.2835 | 14.6313 |
| 0.0009 | 7.4166 | 6000 | 0.4180 | 21.2564 | 14.6415 |
| 0.0007 | 8.0346 | 6500 | 0.4244 | 21.2361 | 14.6551 |
| 0.0006 | 8.6527 | 7000 | 0.4283 | 21.3276 | 14.6957 |
| 0.0006 | 9.2707 | 7500 | 0.4297 | 21.3378 | 14.7059 |
| 0.0006 | 9.8888 | 8000 | 0.4300 | 21.3276 | 14.7093 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.21.1
|