File size: 10,338 Bytes
bbc7ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple

from transformers import PreTrainedModel
from transformers.utils import ModelOutput

from .configuration_roberta_zinc_compression_encoder import RZCompressionConfig

# pairwise cosine  ----------------------------------------------------------------
def pairwise_cosine(x: torch.Tensor) -> torch.Tensor:
    x = F.normalize(x, p=2, dim=-1)
    return x @ x.t()                              # [B, B]

# remove diagonal -----------------------------------------------------------------
def drop_diag(M: torch.Tensor) -> torch.Tensor:
    n = M.size(0)
    return M.masked_select(~torch.eye(n, dtype=torch.bool, device=M.device)).view(n, n - 1)

# pearson row-wise ----------------------------------------------------------------
def rowwise_pearson(ref: torch.Tensor, comp: torch.Tensor, rm_diag: bool=True) -> torch.Tensor:
    if rm_diag:
        ref   = drop_diag(ref)
        comp  = drop_diag(comp)
    ref_z = F.normalize(ref  - ref.mean(dim=1, keepdim=True), p=2, dim=1)
    cmp_z = F.normalize(comp - comp.mean(dim=1, keepdim=True), p=2, dim=1)
    return 1 - (ref_z * cmp_z).sum(dim=1).mean()   #  0 = perfect corr

# aggregate loss ------------------------------------------------------------------
def compute_losses(
    embedding: torch.Tensor, # (batch_size, d)
    compressed: Dict[int, torch.Tensor], # Dict[size, (batch_size, size)]
    recon_stack: torch.Tensor | None, # (batch_size, n_heads, d)
    cfg,
) -> tuple[torch.Tensor, dict[str, float]]:
    """Return (total_loss, terms_dict)"""
    device = embedding.device
    loss_total = torch.zeros((), device=device)
    terms: dict[str, float] = {}

    # ---- base similarities (detach to save mem) ---------------------------
    with torch.no_grad():
        base_sims = pairwise_cosine(embedding)
        ranks     = base_sims.argsort(-1, descending=True)

    # ======================================================================
    # 1) encoder / compressed losses
    # ======================================================================
    for size, z in compressed.items():
        tag = f"cmp{size}"
        comp_sims = pairwise_cosine(z)

        # plain MSE --------------------------------------------------------
        if cfg.mse_loss_weight:
            mse = F.mse_loss(drop_diag(base_sims), drop_diag(comp_sims))
            loss_total += cfg.mse_loss_weight * mse
            terms[f"{tag}_mse"] = mse.detach()

        # top-k MSE --------------------------------------------------------
        if cfg.mse_loss_weight and cfg.topk_values:
            tk_vals = []
            for k in cfg.topk_values:
                idx = ranks[:, 1 : k + 1]
                ref_k = torch.gather(base_sims, 1, idx)
                cmp_k = torch.gather(comp_sims, 1, idx)
                tk_mse = F.mse_loss(ref_k, cmp_k)
                tk_vals.append(tk_mse)
                terms[f"{tag}_top{k}"] = tk_mse.detach()
            tk_agg = torch.stack(tk_vals).mean()
            loss_total += cfg.topk_mse_loss_weight * tk_agg
            terms[f"{tag}_topk_mean"] = tk_agg.detach()

        # Pearson ----------------------------------------------------------
        if cfg.pearson_loss_weight:
            pr = rowwise_pearson(base_sims, comp_sims)
            loss_total += cfg.pearson_loss_weight * pr
            terms[f"{tag}_pearson"] = pr.detach()

        if cfg.pearson_loss_weight and cfg.topk_values:
            pr_vals = []
            for k in cfg.topk_values:
                idx = ranks[:, 1 : k + 1]
                ref_k = torch.gather(base_sims, 1, idx)
                cmp_k = torch.gather(comp_sims, 1, idx)
                pr = rowwise_pearson(ref_k, cmp_k, rm_diag=False)
                pr_vals.append(pr)
                terms[f"{tag}_pearson_top{k}"] = pr.detach()
            pr_agg = torch.stack(pr_vals).sum()
            loss_total += cfg.pearson_loss_weight * pr_agg

    # ======================================================================
    # 2) decoder losses
    # ======================================================================
    if recon_stack is not None:
        # cosine -----------------------------------------------------------
        if cfg.decoder_cosine_weight:
            cos_loss = 1 - F.cosine_similarity(
                recon_stack,
                embedding.unsqueeze(1).expand_as(recon_stack),
                dim=-1,
            ).mean()
            loss_total += cfg.decoder_cosine_weight * cos_loss
            terms["dec_cosine"] = cos_loss.detach()

    return loss_total, terms


# ─── basic blocks ───────────────────────────────────────────────
class FeedForward(nn.Module):
    def __init__(self, d_in: int, d_out: int):
        super().__init__()
        self.fc1 = nn.Linear(d_in, d_out * 2)
        self.fc2 = nn.Linear(d_out, d_out)

    def forward(self, x):
        x = self.fc1(x)
        x1, x2 = x.chunk(2, dim=-1)
        return self.fc2(F.silu(x1) * x2)

class FeedForwardLayer(nn.Module):
    def __init__(
        self, d_in: int, d_out: int, dropout: float = 0.1, layer_norm_eps: Optional[float] = 1e-12
    ):
        super().__init__()
        self.ff = FeedForward(d_in, d_out)
        self.skip = nn.Linear(d_in, d_out) if d_in != d_out else nn.Identity()
        self.dropout = nn.Dropout(dropout)
        self.norm = (
            nn.LayerNorm(d_out, eps=layer_norm_eps) 
            if layer_norm_eps is not None else nn.Identity()
        )

    def forward(self, x):
        y = self.ff(self.dropout(x)) + self.skip(x)
        return self.norm(y)


# ─── pure PyTorch compressor ────────────────────────────────────
class CompressionModel(nn.Module):
    """
    Encoder β†’ (optional) Decoder.
    """

    def __init__(
        self,
        d_in: int,
        d_comp: int,
        encoder_layers: int,
        decoder_layers: int,
        dropout: float,
        layer_norm_eps: Optional[float],
    ):
        super().__init__()

        enc_layers: List[nn.Module] = []
        for i in range(encoder_layers):
            last = i == encoder_layers - 1
            enc_layers.append(
                FeedForwardLayer(
                    d_in,
                    d_comp if last else d_in,
                    dropout if not last else 0.0,
                    None if last else layer_norm_eps,
                )
            )
        self.encoder = nn.Sequential(*enc_layers)

        # optional decoder
        dec_layers: List[nn.Module] = []
        for i in range(decoder_layers):
            last = i == decoder_layers - 1
            d_prev = d_comp if i==0 else d_in
            dec_layers.append(
                FeedForwardLayer(
                    d_prev,
                    d_in,
                    dropout if not last else 0.0,
                    None if last else layer_norm_eps,
                )
            )
        self.decoder = nn.Sequential(*dec_layers) if dec_layers else None

    def forward(self, x) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        z = self.encoder(x)
        x_recon = self.decoder(z) if self.decoder is not None else None
        return z, x_recon


# ─── HF wrapper ─────────────────────────────────────────────────
@dataclass
class RZCompressionOutput(ModelOutput):
    loss: torch.FloatTensor
    loss_terms: Dict[str, torch.Tensor] | None = None
    compressed: Dict[int, torch.FloatTensor] | None = None
    reconstructed: torch.FloatTensor | None = None

class RZCompressionModel(PreTrainedModel):
    config_class = RZCompressionConfig

    def __init__(self, config: RZCompressionConfig):
        super().__init__(config)

        self.compressors = nn.ModuleDict(
            {
                str(size): CompressionModel(
                    d_in=config.input_size,
                    d_comp=size,
                    encoder_layers=config.encoder_layers,
                    decoder_layers=config.decoder_layers,
                    dropout=config.dropout,
                    layer_norm_eps=config.layer_norm_eps,
                )
                for size in config.compression_sizes
            }
        )

        self.post_init()

    def get_encoders(self, unpack_single=False):
        encoders = {}
        for k,v in self.compressors.items():
            v = v.encoder
            if len(v)==1 and unpack_single:
                # unpack from nn.Sequential if only a single layer
                v = v[0]
            encoders[k] = v
        encoders = nn.ModuleDict(encoders)
        return encoders 
    
    def save_encoders(self, path, unpack_single=False):
        encoders = self.get_encoders(unpack_single)
        torch.save(encoders.state_dict(), path)
        
    def compress(self,
                 inputs: torch.Tensor,
                 compression_sizes: List[int]):
        compressed = {d: self.compressors[str(d)].encoder(inputs) for d in compression_sizes}
        return compressed
        
    def forward(self, embedding, return_dict=True, compute_loss=True):
        # ---------- forward passes ------------------------------------------------
        compressed, recons = {}, []
        for size, module in self.compressors.items():
            z, rec = module(embedding)
            compressed[int(size)] = z
            if rec is not None:
                recons.append(rec)
        recon_stack = torch.stack(recons, dim=1) if recons else None

        # ---------- losses --------------------------------------------------------
        if compute_loss:
            loss_total, terms = compute_losses(embedding, compressed, recon_stack, self.config)
        else:
            loss_total, terms = torch.zeros((), device=embedding.device), {}

        if not return_dict:
            return compressed, recon_stack, loss_total, terms

        return RZCompressionOutput(
            loss=loss_total,
            loss_terms=terms,
            compressed=compressed,
            reconstructed=recon_stack,
        )