whisper-medium-el / README.md
emilios's picture
update model card README.md
c8796a6
|
raw
history blame
1.98 kB
metadata
language:
  - el
tags:
  - >-
    hf-asr-leaderboard, whisper-medium, mozilla-foundation/common_voice_11_0,
    greek, whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Medium El - Greek One
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google FLEURS
          type: google/fleurs
          config: el_gr
          split: test
          args: el_gr
        metrics:
          - name: Wer
            type: wer
            value: 15.584586962259174

Whisper Medium El - Greek One

This model is a fine-tuned version of openai/medium-medium on the Google FLEURS dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2864
  • Wer: 15.5846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0006 12.02 1000 0.2718 15.4394
0.0003 24.04 2000 0.2864 15.5846

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.14.0.dev20221206+cu116
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2