metadata
language:
- el
tags:
- >-
hf-asr-leaderboard, whisper-medium, mozilla-foundation/common_voice_11_0,
greek, whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium El - Greek One
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Google FLEURS
type: google/fleurs
config: el_gr
split: test
args: el_gr
metrics:
- name: Wer
type: wer
value: 15.584586962259174
Whisper Medium El - Greek One
This model is a fine-tuned version of openai/medium-medium on the Google FLEURS dataset. It achieves the following results on the evaluation set:
- Loss: 0.2864
- Wer: 15.5846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0006 | 12.02 | 1000 | 0.2718 | 15.4394 |
0.0003 | 24.04 | 2000 | 0.2864 | 15.5846 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.14.0.dev20221206+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2