--- language: - el tags: - hf-asr-leaderboard, whisper-medium, mozilla-foundation/common_voice_11_0, greek, whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Medium El - Greek One results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google FLEURS type: google/fleurs config: el_gr split: test args: el_gr metrics: - name: Wer type: wer value: 15.584586962259174 --- # Whisper Medium El - Greek One This model is a fine-tuned version of [openai/medium-medium](https://huggingface.co/openai/medium-medium) on the Google FLEURS dataset. It achieves the following results on the evaluation set: - Loss: 0.2864 - Wer: 15.5846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0006 | 12.02 | 1000 | 0.2718 | 15.4394 | | 0.0003 | 24.04 | 2000 | 0.2864 | 15.5846 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.14.0.dev20221206+cu116 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2