File size: 2,531 Bytes
db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b 14da60c db96f8b d1eddd9 14da60c db96f8b c044832 db96f8b 6a213a7 c044832 db96f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper medium Greek El Greco
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 el
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 9.899702823179792
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper medium Greek El Greco
This model is a fine-tuned version of [emilios/whisper-medium-el-n2](https://huggingface.co/emilios/whisper-medium-el-n2) on the mozilla-foundation/common_voice_11_0 el dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5669
- Wer: 9.8997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 11000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.0014 | 58.82 | 1000 | 0.4951 | 10.3640 |
| 0.0006 | 117.65 | 2000 | 0.5181 | 10.2805 |
| 0.0007 | 175.82 | 3000 | 0.5317 | 10.1133 |
| 0.0004 | 234.65 | 4000 | 0.5396 | 10.1226 |
| 0.0004 | 293.47 | 5000 | 0.5532 | 10.1040 |
| 0.0013 | 352.29 | 6000 | 0.5645 | 10.0854 |
| 0.0002 | 411.12 | 7000 | 0.5669 | 10.1133 |
| 0.0001 | 469.94 | 8000 | 0.5669 | 9.8997 |
| 0.0001 | 528.76 | 9000 | 0.5645 | 9.9276 |
| 0.0001 | 587.82 | 10000 | 0.5674 | 9.9647 |
| 0.0003 | 646.82 | 11000 | 0.5669 | 9.9461 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 2.0.0.dev20221216+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|