File size: 2,190 Bytes
f7a7173 76b1b81 f7a7173 76b1b81 f7a7173 76b1b81 f7a7173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# embaas/sentence-transformers-e5-large-v2
This is a the sentence-transformers version of the [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Using with API
You can use the [embaas API](https://embaas.io) to encode your input. Get your free API key from [embaas.io](https://embaas.io)
```python
import requests
url = "https://api.embaas.io/v1/embeddings/"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer ${YOUR_API_KEY}"
}
data = {
"texts": ["This is an example sentence.", "Here is another sentence."],
"instruction": "query"
"model": "e5-large-v2"
}
response = requests.post(url, json=data, headers=headers)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
Find the results of the e5 at the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |