abhi-mosaic
commited on
Commit
•
cfc57ba
1
Parent(s):
9673b24
Update README.md
Browse files
README.md
CHANGED
@@ -50,7 +50,10 @@ It includes options for many training efficiency features such as [FlashAttentio
|
|
50 |
|
51 |
```python
|
52 |
import transformers
|
53 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
54 |
```
|
55 |
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
56 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
@@ -58,19 +61,34 @@ This is because we use a custom `MPT` model architecture that is not yet part of
|
|
58 |
|
59 |
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
|
60 |
```python
|
61 |
-
config = transformers.AutoConfig.from_pretrained(
|
|
|
|
|
|
|
62 |
config.attn_config['attn_impl'] = 'triton'
|
63 |
|
64 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
65 |
model.to(device='cuda:0')
|
66 |
```
|
67 |
|
68 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
69 |
|
70 |
```python
|
71 |
-
config = transformers.AutoConfig.from_pretrained(
|
|
|
|
|
|
|
72 |
config.update({"max_seq_len": 4096})
|
73 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
74 |
```
|
75 |
|
76 |
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
|
|
|
50 |
|
51 |
```python
|
52 |
import transformers
|
53 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
54 |
+
'mosaicml/mpt-7b-instruct',
|
55 |
+
trust_remote_code=True
|
56 |
+
)
|
57 |
```
|
58 |
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
|
59 |
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
|
|
|
61 |
|
62 |
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model with `attn_impl='triton'` and move the model to `bfloat16`:
|
63 |
```python
|
64 |
+
config = transformers.AutoConfig.from_pretrained(
|
65 |
+
'mosaicml/mpt-7b-instruct',
|
66 |
+
trust_remote_code=True
|
67 |
+
)
|
68 |
config.attn_config['attn_impl'] = 'triton'
|
69 |
|
70 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
71 |
+
'mosaicml/mpt-7b-instruct',
|
72 |
+
config=config,
|
73 |
+
torch_dtype=torch.bfloat16,
|
74 |
+
trust_remote_code=True
|
75 |
+
)
|
76 |
model.to(device='cuda:0')
|
77 |
```
|
78 |
|
79 |
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
|
80 |
|
81 |
```python
|
82 |
+
config = transformers.AutoConfig.from_pretrained(
|
83 |
+
'mosaicml/mpt-7b-instruct',
|
84 |
+
trust_remote_code=True
|
85 |
+
)
|
86 |
config.update({"max_seq_len": 4096})
|
87 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
88 |
+
'mosaicml/mpt-7b-instruct',
|
89 |
+
config=config,
|
90 |
+
trust_remote_code=True
|
91 |
+
)
|
92 |
```
|
93 |
|
94 |
This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
|