File size: 2,020 Bytes
ebfcc72
 
 
3709f0d
 
ebfcc72
 
 
 
 
 
 
 
 
 
 
 
 
3709f0d
ebfcc72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- automatic-speech-recognition
- arabic_speech_corpus
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-ar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-ar

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ARABIC_SPEECH_CORPUS - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3212
- Wer: 0.0636

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0793        | 8.85  | 1000  | 0.1626          | 0.0786 |
| 0.0396        | 17.7  | 2000  | 0.2199          | 0.0807 |
| 0.0285        | 26.55 | 3000  | 0.2289          | 0.0694 |
| 0.021         | 35.4  | 4000  | 0.2662          | 0.0722 |
| 0.0177        | 44.25 | 5000  | 0.2459          | 0.0744 |
| 0.0155        | 53.1  | 6000  | 0.2689          | 0.0679 |
| 0.0149        | 61.95 | 7000  | 0.2760          | 0.0717 |
| 0.0074        | 70.8  | 8000  | 0.3004          | 0.0680 |
| 0.0058        | 79.65 | 9000  | 0.3113          | 0.0650 |
| 0.0033        | 88.5  | 10000 | 0.3212          | 0.0636 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.1.dev0
- Tokenizers 0.13.2