File size: 14,373 Bytes
4ea2a99
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692649.6991677, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZDsD320Fy6et0JOhMS0DQ/OB67NX0euQAAgD8AAAAAQJmCvexjmT9Gx5W9e2ShvtQR473lfHc9AAAAAAAAAADAF6g9L88HP/fmkrz5di++aFo2PJ59Tj0AAAAAAAAAACaRsr2uX426hicnOh6Y9Db6PDA75bZOuQAAgD8AAAAAzQ+XPIoOqD85dUk+rqPcvuOWurxKesi8AAAAAAAAAAAA5ey9xlTZPuiIfT65nIq+xPaGPacxuzwAAAAAAAAAADMzpLyPplS6M40DvLaSSTeYSqK5Rje4tgAAgD8AAIA/5tYnPU8Rdbwahly88GGEPbiumz10Cp08AACAPwAAgD+ABLy9SFWJuppCWDtCtVi2MIn+uh7PeroAAIA/AACAP8Betj3PJ3w/MajHPQAqq772Po89aeC/vQAAAAAAAAAAJq4YvtLB2ruGv4U4OVWlPK+ZRD0KeYq9AACAPwAAgD/mCeS9e9KyunrQEjya/VY2cVh7OsOJPTUAAIA/AAAAAJpNDz1ce1e64vRau9bHnzVXO4S6aJYVtQAAgD8AAIA/zd4uPPF4nD96kSY9Po21vk52YzuVODk8AAAAAAAAAAAAMRU99gxRulvyQ7yJiNy12gk7u8veRDUAAIA/AACAPzM5lL1cfwW6Wks5O7XT8zat5pw7kIhZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHbCryVN0ZECUhpRSlIwBbJRN6AOMAXSUR0CRyACOFQEZdX2UKGgGaAloD0MIIEWduQf5ZECUhpRSlGgVTegDaBZHQJHQOAoXsPd1fZQoaAZoCWgPQwhGelG732pmQJSGlFKUaBVN6ANoFkdAkdCYku6ErXV9lChoBmgJaA9DCC6u8ZnsD2VAlIaUUpRoFU3oA2gWR0CR0O3hGYrsdX2UKGgGaAloD0MIqdxELc23Y0CUhpRSlGgVTegDaBZHQJHVtlPJq7B1fZQoaAZoCWgPQwgB+n3/ZvFmQJSGlFKUaBVN6ANoFkdAkdbJxm03O3V9lChoBmgJaA9DCBtIF5tWI2FAlIaUUpRoFU3oA2gWR0CR2JD15B1LdX2UKGgGaAloD0MItOOG302WZECUhpRSlGgVTegDaBZHQJHtP4i5d4V1fZQoaAZoCWgPQwgb2gBsQDVkQJSGlFKUaBVN6ANoFkdAkfGHxOLzgHV9lChoBmgJaA9DCN7n+GhxymBAlIaUUpRoFU3oA2gWR0CR8zd8zAN5dX2UKGgGaAloD0MIQ1ciUP2IY0CUhpRSlGgVTegDaBZHQJH8RM0xdpt1fZQoaAZoCWgPQwijBP2FHuk9QJSGlFKUaBVL9WgWR0CSAZK9f1HwdX2UKGgGaAloD0MIccgG0sXyM0CUhpRSlGgVS+FoFkdAkgHpXuE253V9lChoBmgJaA9DCFn5ZTBGdmNAlIaUUpRoFU3oA2gWR0CSB3WiUPhAdX2UKGgGaAloD0MI2qoksg+OZUCUhpRSlGgVTegDaBZHQJIKMTj/+851fZQoaAZoCWgPQwgY6xuYXD5kQJSGlFKUaBVN6ANoFkdAkgvw44p+dHV9lChoBmgJaA9DCO7O2m2Xi2JAlIaUUpRoFU3oA2gWR0CSDKN3GGVSdX2UKGgGaAloD0MIegCL/PppNECUhpRSlGgVS+VoFkdAkhA5v99+gHV9lChoBmgJaA9DCFu21hcJDGJAlIaUUpRoFU3oA2gWR0CSEpx+rlvIdX2UKGgGaAloD0MIi6VIvhKYZUCUhpRSlGgVTegDaBZHQJIUeCPIXCV1fZQoaAZoCWgPQwiBsilXePhcQJSGlFKUaBVN6ANoFkdAkhwMU7CBPXV9lChoBmgJaA9DCBKFlnX/+GBAlIaUUpRoFU3oA2gWR0CSHGXY150KdX2UKGgGaAloD0MI3uNMEzZVYkCUhpRSlGgVTegDaBZHQJIctUJfICF1fZQoaAZoCWgPQwgDXmbYKDc8QJSGlFKUaBVL8GgWR0CSHj2FFlTWdX2UKGgGaAloD0MIA7StZh1SYkCUhpRSlGgVTegDaBZHQJIg8S6DoQp1fZQoaAZoCWgPQwivljszwQ5iQJSGlFKUaBVN6ANoFkdAkiHhGDtgKHV9lChoBmgJaA9DCM5THXIzd2JAlIaUUpRoFU3oA2gWR0CSI3fdyksSdX2UKGgGaAloD0MI3o5wWvDKYECUhpRSlGgVTegDaBZHQJI3VuJk5IZ1fZQoaAZoCWgPQwg8bCIzF79eQJSGlFKUaBVN6ANoFkdAkkbE/8l5W3V9lChoBmgJaA9DCO3Vx0PfGF9AlIaUUpRoFU3oA2gWR0CSTGTnq3VkdX2UKGgGaAloD0MIy2lPyTk/YkCUhpRSlGgVTegDaBZHQJJSIDfWMCN1fZQoaAZoCWgPQwh2jCsujtxiQJSGlFKUaBVN6ANoFkdAklTG8mKIi3V9lChoBmgJaA9DCPqzHykiA11AlIaUUpRoFU3oA2gWR0CSVoBdD6WPdX2UKGgGaAloD0MI/DcvTvx0ZkCUhpRSlGgVTegDaBZHQJJXLko4MnZ1fZQoaAZoCWgPQwicwkoFla1gQJSGlFKUaBVN6ANoFkdAkl0ctXgccXV9lChoBmgJaA9DCIiE7/0N6F1AlIaUUpRoFU3oA2gWR0CSXv8fFJg9dX2UKGgGaAloD0MIdJgvL8BeCMCUhpRSlGgVS7JoFkdAkmDeXVsk6nV9lChoBmgJaA9DCMk4RrJHFV5AlIaUUpRoFU3oA2gWR0CSZuIjW07bdX2UKGgGaAloD0MIYroQq7/pYECUhpRSlGgVTegDaBZHQJJnQaLn9vV1fZQoaAZoCWgPQwhb7zfacapiQJSGlFKUaBVN6ANoFkdAkmeNGI9C/3V9lChoBmgJaA9DCMMrSZ5rjmRAlIaUUpRoFU3oA2gWR0CSaUXvphWpdX2UKGgGaAloD0MIfNY1Wg5QYECUhpRSlGgVTegDaBZHQJJsAw7DEWJ1fZQoaAZoCWgPQwh/FHXmHvBlQJSGlFKUaBVN6ANoFkdAkm0EZm7J4nV9lChoBmgJaA9DCP5D+u1r7GFAlIaUUpRoFU3oA2gWR0CSbqTxoZhsdX2UKGgGaAloD0MIrn5skh91MUCUhpRSlGgVS8ZoFkdAkoGU/KQq7XV9lChoBmgJaA9DCIyDS8ccomFAlIaUUpRoFU3oA2gWR0CSgnI065oXdX2UKGgGaAloD0MIxQH0+/6N/b+UhpRSlGgVS/5oFkdAkoh5aiblR3V9lChoBmgJaA9DCGSw4lRrE2FAlIaUUpRoFU3oA2gWR0CSj/z+WGATdX2UKGgGaAloD0MIRNsxddfvZECUhpRSlGgVTegDaBZHQJKVXbnHNot1fZQoaAZoCWgPQwgexqS/l3oqQJSGlFKUaBVL6WgWR0CSl1C4z7/GdX2UKGgGaAloD0MIW7VrQlrFY0CUhpRSlGgVTegDaBZHQJKbTCqIacZ1fZQoaAZoCWgPQwjbNLbXgmZjQJSGlFKUaBVN6ANoFkdAkp4Pw3HaOHV9lChoBmgJaA9DCMdGIF7XbmNAlIaUUpRoFU3oA2gWR0CSoIlPrOZ9dX2UKGgGaAloD0MIQBcNGQ88YUCUhpRSlGgVTegDaBZHQJKml8ohIOJ1fZQoaAZoCWgPQwiBe54/7cVjQJSGlFKUaBVN6ANoFkdAkqh18CxNZnV9lChoBmgJaA9DCPZCAdtBjmFAlIaUUpRoFU3oA2gWR0CSqmdAxBVudX2UKGgGaAloD0MIKUAUzJiWPkCUhpRSlGgVTQMBaBZHQJKwPFyaNMp1fZQoaAZoCWgPQwj2KFyPwoRdQJSGlFKUaBVN6ANoFkdAkrCAuAZsK3V9lChoBmgJaA9DCBx5ILLIdGNAlIaUUpRoFU3oA2gWR0CSsOB19v0idX2UKGgGaAloD0MID9HoDuKVYECUhpRSlGgVTegDaBZHQJKxLhZQpF11fZQoaAZoCWgPQwjG/UemQ8NAQJSGlFKUaBVL62gWR0CStJtcfNiZdX2UKGgGaAloD0MI6X+5Fq2lZUCUhpRSlGgVTegDaBZHQJK1faufVZt1fZQoaAZoCWgPQwhH41C/i5xlQJSGlFKUaBVN6ANoFkdAkrgo6nzg/HV9lChoBmgJaA9DCLix2ZFq52JAlIaUUpRoFU3oA2gWR0CSvdI4lyBDdX2UKGgGaAloD0MIcAhVavZAYUCUhpRSlGgVTegDaBZHQJLMrER8MNN1fZQoaAZoCWgPQwg0vcRYJs5jQJSGlFKUaBVN6ANoFkdAkt3NETg2qHV9lChoBmgJaA9DCPymsFLBRmJAlIaUUpRoFU3oA2gWR0CS5EUCaJAMdX2UKGgGaAloD0MIqMe2DDiCZUCUhpRSlGgVTegDaBZHQJLmaEmICU51fZQoaAZoCWgPQwhw7URJSEhiQJSGlFKUaBVN6ANoFkdAkuq9iH6/I3V9lChoBmgJaA9DCIyjchO1+mNAlIaUUpRoFU3oA2gWR0CS7dizsyBTdX2UKGgGaAloD0MIZwqd11gIYkCUhpRSlGgVTegDaBZHQJL606q814x1fZQoaAZoCWgPQwhvERjrm75iQJSGlFKUaBVN6ANoFkdAkv0ct9QXRHV9lChoBmgJaA9DCKc7TzxnJFpAlIaUUpRoFU3oA2gWR0CTA6MK1G9YdX2UKGgGaAloD0MIxeV4BSK1ZUCUhpRSlGgVTegDaBZHQJMD8nVoYel1fZQoaAZoCWgPQwj9gt2wbYpfQJSGlFKUaBVN6ANoFkdAkwRSLVFx43V9lChoBmgJaA9DCNl6hnBMw2JAlIaUUpRoFU3oA2gWR0CTBJ/vv0AcdX2UKGgGaAloD0MIqRH6mXoeY0CUhpRSlGgVTegDaBZHQJMIHVoYekp1fZQoaAZoCWgPQwitw9FVOpBjQJSGlFKUaBVN6ANoFkdAkwjpCF9KEnV9lChoBmgJaA9DCPSMfcnGs1BAlIaUUpRoFUveaBZHQJMKxHDrJKd1fZQoaAZoCWgPQwjb4ET0axtcQJSGlFKUaBVN6ANoFkdAkwt/kq+ajXV9lChoBmgJaA9DCBU7God6GmFAlIaUUpRoFU3oA2gWR0CTEMjMFEApdX2UKGgGaAloD0MIz6RN1T0SQ0CUhpRSlGgVS+xoFkdAkxEB77bcoHV9lChoBmgJaA9DCAisHFrkQWJAlIaUUpRoFU3oA2gWR0CTEZhYvFm4dX2UKGgGaAloD0MIec4WEFqhT0CUhpRSlGgVS8ZoFkdAkyEUXDWK/HV9lChoBmgJaA9DCFaCxeHM3WFAlIaUUpRoFU3oA2gWR0CTLK/Ho5ggdX2UKGgGaAloD0MImkF8YEd/YkCUhpRSlGgVTegDaBZHQJMyKWPcSGt1fZQoaAZoCWgPQwiAuRYtwEJgQJSGlFKUaBVN6ANoFkdAkzQQTAWSEHV9lChoBmgJaA9DCEG7Q4qBeWNAlIaUUpRoFU3oA2gWR0CTOAU83dbgdX2UKGgGaAloD0MIG9gqweLWXkCUhpRSlGgVTegDaBZHQJM63+fh/Al1fZQoaAZoCWgPQwjFVtC0RA1hQJSGlFKUaBVN6ANoFkdAk0Y9FKCg9XV9lChoBmgJaA9DCMIv9fOmGWZAlIaUUpRoFU3oA2gWR0CTT0i9IwuedX2UKGgGaAloD0MI9pfdk4dIXUCUhpRSlGgVTegDaBZHQJNPktyxRl91fZQoaAZoCWgPQwhdixagbVZkQJSGlFKUaBVN6ANoFkdAk1BTGcWj5HV9lChoBmgJaA9DCPFkNzN6R2BAlIaUUpRoFU3oA2gWR0CTVJdpqREGdX2UKGgGaAloD0MIPQ/uzlqDYUCUhpRSlGgVTegDaBZHQJNX7oX9BKN1fZQoaAZoCWgPQwgQ5+EEpihkQJSGlFKUaBVN6ANoFkdAk1jkWykbgnV9lChoBmgJaA9DCMnLmljgxWNAlIaUUpRoFU3oA2gWR0CTXywc5sCUdX2UKGgGaAloD0MIY5eo3prbYECUhpRSlGgVTegDaBZHQJNfbMmnfl91fZQoaAZoCWgPQwg+k/3ztA1jQJSGlFKUaBVN6ANoFkdAk2ATuF6Av3V9lChoBmgJaA9DCNV3flECyGFAlIaUUpRoFU3oA2gWR0CTYhr+o99udWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}