File size: 3,325 Bytes
554d18a
 
 
 
 
 
 
 
 
 
008e68a
 
 
 
7c79c13
008e68a
7c79c13
c0c9a84
554d18a
b286788
554d18a
 
008e68a
 
 
 
 
 
 
 
 
 
 
554d18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3406d
554d18a
 
 
 
 
 
 
 
 
 
6f3406d
554d18a
 
 
 
 
 
 
6f3406d
554d18a
6f3406d
554d18a
 
 
 
 
 
 
 
 
 
 
 
6f3406d
 
554d18a
 
 
 
 
 
 
 
6f3406d
554d18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity

---

# ellamind/e5small_sgb_aktg_bmf_experimental

e5 Small trained on the SGB5, AktG + train set of the BMF-Rundschreiben (19k queries in total).

**Disclaimer: Please note that this model is named sgb_aktg_bmf due to (public) SGB, AKTG and BMF-Rundschreiben data, which was used to train it. It has no connection to any public entity and was built internally by ellamind.**

This model is the `e5small_tuned3_val_bmf` version in the image below:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/647ef81ce9c81260ff84fdd7/8hVkoYUQuIB4ZFjC_dnz5.png)


This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

## Usage (Llama-Index)

```
embed_model = HuggingFaceEmbedding(
    model_name="ellamind/e5small_sgb_aktg_bmf_experimental",
    query_instruction="query: ",
    text_instruction="passage: ",
    device="mps",
    embed_batch_size=4,
)
```

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 258 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 4,
    "evaluation_steps": 200,
    "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 103,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Citing & Authors

<!--- Describe where people can find more information -->