metadata
license: creativeml-openrail-m
base_model: ekshat/stable-diffusion-anime-style
datasets:
- lambdalabs/naruto-blip-captions
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
Text-to-image finetuning - ekshat/Stable_Diffussion_Anime_Style
This pipeline was finetuned from ekshat/stable-diffusion-anime-style on the lambdalabs/naruto-blip-captions dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A person with blue eyes.']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("ekshat/Stable_Diffussion_Anime_Style", torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
prompt = "A person with blue eyes."
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 17
- Learning rate: 2e-06
- Batch size: 2
- Gradient accumulation steps: 1
- Image resolution: 512
- Mixed-precision: fp16