File size: 1,164 Bytes
0075a4a 824d961 0075a4a 99e7db1 0075a4a cbf723a 0075a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: creativeml-openrail-m
base_model: ekshat/stable-diffusion-anime-style
datasets:
- lambdalabs/naruto-blip-captions
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
# Text-to-image finetuning - ekshat/Stable_Diffussion_Anime_Style
This pipeline was finetuned from **ekshat/stable-diffusion-anime-style** on the **lambdalabs/naruto-blip-captions** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A person with blue eyes.']:
![val_imgs_grid](./val-img.jpg)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("ekshat/Stable_Diffussion_Anime_Style", torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
prompt = "A person with blue eyes."
image = pipeline(prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 17
* Learning rate: 2e-06
* Batch size: 2
* Gradient accumulation steps: 1
* Image resolution: 512
* Mixed-precision: fp16
|