File size: 11,695 Bytes
8fb760e 65e65ac 8fb760e 65e65ac 8fb760e 65e65ac 8fb760e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from typing import Dict, List, Any
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline, LongformerTokenizer
import torch
import torch.nn as nn
import torch.nn.functional as F
import spacy
from spacy.matcher import PhraseMatcher
from transformers import LongformerModel
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
Job_num_labels = None
class EndpointHandler():
def __init__(self, path=""):
# Label mapping as provided
self.Job_label_map = {
"JT": 0, # Job Title
"JS": 1, # Job Summary
"COT": 2, # Title of Company Overview Section
"COC": 3, # Content of Company Overview Section
"RT": 4, # Title of Responsibilites Section
"RC": 5, # Content of Responsibilites Section
"RQT": 6, # Title of Required Qualifications Section
"RQC": 7, # Content of Required Qualifications Section
"PQT": 8, # Title of Preferred Qualifications Section
"PQC": 9, # Content of Preferred Qualifications Section
"ET": 10, # Employment Type
"SBC": 11, # Content of Salary and Benefits Section
"SBT": 12 # Title of Salary and Benefits Section
}
global Job_num_labels
self.Job_num_labels = len(self.Job_label_map)
Job_num_labels = self.Job_num_labels
self.Job_labels = [
{"value": "JT", "label": "Job Title"},
{"value": "JS", "label": "Job Summary"},
{"value": "COT", "label": "Title of Company Overview Section"},
{"value": "COC", "label": "Content of Company Overview Section"},
{"value": "RT", "label": "Title of Responsibilites Section"},
{"value": "RC", "label": "Content of Responsibilites Section"},
{"value": "RQT", "label": "Title of Required Qualifications Section"},
{"value": "RQC", "label": "Content of Required Qualifications Section"},
{"value": "PQT", "label": "Title of Preferred Qualifications Section"},
{"value": "PQC", "label": "Content of Preferred Qualifications Section"},
{"value": "ET", "label": "Employment Type"},
{"value": "SBC", "label": "Content of Salary and Benefits Section"},
{"value": "SBT", "label": "Title of Salary and Benefits Section"},
]
# Load tokenizer
self.Job_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
self.Job_tokenizer.cls_token
# Load model architecture
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.Job_model = LongformerSentenceClassifier(num_labels=self.Job_num_labels)
self.Job_model.to(self.device)
# Load trained weights
self.Job_model.load_state_dict(torch.load(path + "/JobSegmentClassifier3rdEpoch_v2.pth", map_location=self.device))
# Set model to evaluation mode
self.Job_model.eval()
nlp = spacy.load("en_core_web_lg")
self.skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)
def predict_job_sections(self, model, text, tokenizer, device):
model.eval()
# Tokenize text and get input tensors
encoding = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=4096
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# Identify `[CLS]` positions (assuming each sentence starts with `[CLS]`)
cls_positions = (input_ids == tokenizer.cls_token_id).nonzero(as_tuple=True)[1]
cls_positions = cls_positions.unsqueeze(0).to(device) # Shape: (1, num_sentences)
# Create global attention mask (Longformer requires at least 1 global attention token)
global_attention_mask = torch.zeros_like(input_ids)
global_attention_mask[:, cls_positions] = 1 # Assign global attention to `[CLS]` tokens
# Run the model
with torch.no_grad():
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
cls_positions=cls_positions
) # Shape: (1, num_sentences, num_labels)
logits = logits.squeeze(0) # Shape: (num_sentences, num_labels)
probs = F.softmax(logits, dim=-1) # Convert logits to probabilities
predictions = torch.argmax(probs, dim=-1) # Get predicted label indices
return predictions.cpu().numpy() # Convert to NumPy array for easy use
def extract_job_sections(self, text):
lines = text.splitlines()
lines = [line for line in text.splitlines() if line.strip()]
text = lines
concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)
return predictions, text
def extract_job_requirements(self, text):
lines = text.splitlines()
lines = [line for line in text.splitlines() if line.strip()]
text = lines
concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)
requirements = []
for i, pred in enumerate(predictions):
if self.Job_labels[pred]['value'] == "RQC" and i < len(lines):
requirements.append(lines[i])
return requirements
def label_job_post(self, text):
lines = self.extract_job_requirements(text)
response = {
"requirements": []
}
for item in lines:
response["requirements"].append(item)
response["skills"] = []
seen = set()
if response["requirements"]: # Only process if we have requirements
annotations = self.skill_extractor.annotate(" ".join(response["requirements"]))
if 'results' in annotations and 'full_matches' in annotations['results']:
for result in annotations['results']['full_matches']:
# Standardizing the skill names
skill_info = SKILL_DB.get(result["skill_id"], {})
skill_name = skill_info.get('skill_name', 'Unknown Skill')
if skill_name not in seen:
seen.add(skill_name)
response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
if 'results' in annotations and 'ngram_scored' in annotations['results']:
for result in annotations['results']['ngram_scored']:
if result['score'] >= 1:
# Standardizing the skill names
skill_info = SKILL_DB.get(result["skill_id"], {})
skill_name = skill_info.get('skill_name', 'Unknown Skill')
if skill_name not in seen:
seen.add(skill_name)
response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
return response
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
text = data['inputs']
# predictions, text = self.extract_job_sections(text)
# requirements = self.extract_job_requirements(text)
label_job_post = self.label_job_post(text)
return label_job_post
class LongformerSentenceClassifier(nn.Module):
def __init__(self, model_name="allenai/longformer-base-4096", num_labels=Job_num_labels):
"""
Custom Longformer model for sentence classification.
Args:
model_name (str): Hugging Face Longformer model.
num_labels (int): Number of possible sentence labels.
"""
super(LongformerSentenceClassifier, self).__init__()
self.longformer = LongformerModel.from_pretrained(model_name)
self.classifier = nn.Linear(self.longformer.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask, global_attention_mask, cls_positions):
"""
Forward pass for sentence classification.
Args:
input_ids (Tensor): Tokenized input IDs, shape (batch_size, max_length)
attention_mask (Tensor): Attention mask, shape (batch_size, max_length)
global_attention_mask (Tensor): Global attention mask, shape (batch_size, max_length)
cls_positions (List[Tensor]): Indices of `[CLS]` tokens for each batch element.
"""
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask
)
last_hidden_state = outputs.last_hidden_state
cls_positions = cls_positions.view(input_ids.shape[0], -1)
cls_embeddings = last_hidden_state.gather(1, cls_positions.unsqueeze(-1).expand(-1, -1, last_hidden_state.size(-1)))
logits = self.classifier(cls_embeddings)
return logits
if __name__ == "__main__":
# init handler
my_handler = EndpointHandler(path=".")
# prepare sample payload
payload = {"inputs": """
We are seeking an experienced Accounting Specialist to join our team.
The Accounting Specialist will be responsible for various financial tasks, including reconciling accounts, assist with accounts payable,
preparing financial reports, and assisting the Controller.
The ideal candidate will have a strong background in accounting principles and practices, as well as proficiency in Quickbooks accounting
software, Excel and financial concepts.
Responsibilities:
- Perform general ledger reconciliation to ensure accuracy of financial data
- Prepare and analyze financial reports, bank reconciliations and analysis.
- Collaborate with internal teams to ensure compliance with accounting policies and procedures
- Support financial audits by providing necessary documentation and information
- Accounts Payable - Multiple Companies
- GL Reconciliations
- Prepare Weekly, Monthly and Quarterly Commission Reports
- Daily Bank Deposits
Skills:
- Proficiency in accounting software QuickBooks Online
- Strong knowledge of corporate finance principles and practices
- Experience with general ledger reconciliation
- Ability to understand concise financial reports
- Strong analytical skills for financial analysis
- Knowledge of financial auditing processes
- Understanding of cash flow analysis
- Solid grasp of financial concepts such as revenue recognition, depreciation, and accruals
- Ability to manage multiple priorities and time effectively.
Pay:
$50,000 - $60,000 per year
Benefits:
401(k) matching
Dental insurance
Health insurance
Paid time off
Vision insurance
Experience:
Microsoft Excel: 3 years (Required)
QuickBooks Online: 3 years (Required)
"""}
# holiday_payload = {"inputs": "Today is a though day"}
# test the handler
non_holiday_pred=my_handler(payload)
# holiday_payload=my_handler(holiday_payload)
# show results
print(non_holiday_pred)
# print("holiday_payload", holiday_payload) |