File size: 11,695 Bytes
8fb760e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65e65ac
8fb760e
 
 
65e65ac
8fb760e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65e65ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb760e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from typing import Dict, List, Any
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline, LongformerTokenizer
import torch
import torch.nn as nn
import torch.nn.functional as F
import spacy
from spacy.matcher import PhraseMatcher
from transformers import LongformerModel
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor


Job_num_labels = None
class EndpointHandler():
    def __init__(self, path=""):
        # Label mapping as provided
        self.Job_label_map = {
            "JT": 0,    # Job Title
            "JS": 1,    # Job Summary
            "COT": 2,   # Title of Company Overview Section
            "COC": 3,   # Content of Company Overview Section
            "RT": 4,    # Title of Responsibilites Section
            "RC": 5,    # Content of Responsibilites Section
            "RQT": 6,   # Title of Required Qualifications Section
            "RQC": 7,   # Content of Required Qualifications Section
            "PQT": 8,   # Title of Preferred Qualifications Section
            "PQC": 9,   # Content of Preferred Qualifications Section
            "ET": 10,   # Employment Type
            "SBC": 11,  # Content of Salary and Benefits Section
            "SBT": 12   # Title of Salary and Benefits Section
        }
        global Job_num_labels
        self.Job_num_labels = len(self.Job_label_map)
        Job_num_labels = self.Job_num_labels

        self.Job_labels = [
            {"value": "JT", "label": "Job Title"},
            {"value": "JS", "label": "Job Summary"},
            {"value": "COT", "label": "Title of Company Overview Section"},
            {"value": "COC", "label": "Content of Company Overview Section"},
            {"value": "RT", "label": "Title of Responsibilites Section"},
            {"value": "RC", "label": "Content of Responsibilites Section"},
            {"value": "RQT", "label": "Title of Required Qualifications Section"},
            {"value": "RQC", "label": "Content of Required Qualifications Section"},
            {"value": "PQT", "label": "Title of Preferred Qualifications Section"},
            {"value": "PQC", "label": "Content of Preferred Qualifications Section"},
            {"value": "ET", "label": "Employment Type"},
            {"value": "SBC", "label": "Content of Salary and Benefits Section"},
            {"value": "SBT", "label": "Title of Salary and Benefits Section"},
        ]
        # Load tokenizer
        self.Job_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
        self.Job_tokenizer.cls_token
        # Load model architecture
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.Job_model = LongformerSentenceClassifier(num_labels=self.Job_num_labels)
        self.Job_model.to(self.device)
        # Load trained weights
        self.Job_model.load_state_dict(torch.load(path + "/JobSegmentClassifier3rdEpoch_v2.pth", map_location=self.device))

        # Set model to evaluation mode
        self.Job_model.eval()


        nlp = spacy.load("en_core_web_lg")
        self.skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)

    def predict_job_sections(self, model, text, tokenizer, device):
        model.eval()

        # Tokenize text and get input tensors
        encoding = tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            padding="max_length",
            max_length=4096
        )

        input_ids = encoding["input_ids"].to(device)
        attention_mask = encoding["attention_mask"].to(device)

        # Identify `[CLS]` positions (assuming each sentence starts with `[CLS]`)
        cls_positions = (input_ids == tokenizer.cls_token_id).nonzero(as_tuple=True)[1]
        cls_positions = cls_positions.unsqueeze(0).to(device)  # Shape: (1, num_sentences)

        # Create global attention mask (Longformer requires at least 1 global attention token)
        global_attention_mask = torch.zeros_like(input_ids)
        global_attention_mask[:, cls_positions] = 1  # Assign global attention to `[CLS]` tokens

        # Run the model
        with torch.no_grad():
            logits = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                global_attention_mask=global_attention_mask,
                cls_positions=cls_positions
            )  # Shape: (1, num_sentences, num_labels)

        logits = logits.squeeze(0)  # Shape: (num_sentences, num_labels)
        probs = F.softmax(logits, dim=-1)  # Convert logits to probabilities
        predictions = torch.argmax(probs, dim=-1)  # Get predicted label indices

        return predictions.cpu().numpy()  # Convert to NumPy array for easy use
    
    def extract_job_sections(self, text):
        lines = text.splitlines()
        lines = [line for line in text.splitlines() if line.strip()]
        text = lines

        concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
        predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)

        return predictions, text

    def extract_job_requirements(self, text):
        lines = text.splitlines()
        lines = [line for line in text.splitlines() if line.strip()]
        text = lines

        concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
        predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)

        requirements = []
        for i, pred in enumerate(predictions):
            if self.Job_labels[pred]['value'] == "RQC" and i < len(lines):
                requirements.append(lines[i])

        return requirements
        
    def label_job_post(self, text):
        lines = self.extract_job_requirements(text)
        response = {
            "requirements": []
        }
        for item in lines:
            response["requirements"].append(item)

        response["skills"] = []
        seen = set()
        if response["requirements"]:  # Only process if we have requirements
            annotations = self.skill_extractor.annotate(" ".join(response["requirements"]))
            if 'results' in annotations and 'full_matches' in annotations['results']:
                for result in annotations['results']['full_matches']:
                    # Standardizing the skill names
                    skill_info = SKILL_DB.get(result["skill_id"], {})
                    skill_name = skill_info.get('skill_name', 'Unknown Skill')
                    if skill_name not in seen:
                        seen.add(skill_name)
                        response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
            if 'results' in annotations and 'ngram_scored' in annotations['results']:
                for result in annotations['results']['ngram_scored']:
                    if result['score'] >= 1:
                        # Standardizing the skill names
                        skill_info = SKILL_DB.get(result["skill_id"], {})
                        skill_name = skill_info.get('skill_name', 'Unknown Skill')
                        if skill_name not in seen:
                            seen.add(skill_name)
                            response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
        return response


    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        text = data['inputs']
        # predictions, text = self.extract_job_sections(text)
        # requirements = self.extract_job_requirements(text)
        label_job_post = self.label_job_post(text)
        return label_job_post

class LongformerSentenceClassifier(nn.Module):
    def __init__(self, model_name="allenai/longformer-base-4096", num_labels=Job_num_labels):
        """
        Custom Longformer model for sentence classification.

        Args:
            model_name (str): Hugging Face Longformer model.
            num_labels (int): Number of possible sentence labels.
        """
        super(LongformerSentenceClassifier, self).__init__()
        self.longformer = LongformerModel.from_pretrained(model_name)
        self.classifier = nn.Linear(self.longformer.config.hidden_size, num_labels)

    def forward(self, input_ids, attention_mask, global_attention_mask, cls_positions):
        """
        Forward pass for sentence classification.

        Args:
            input_ids (Tensor): Tokenized input IDs, shape (batch_size, max_length)
            attention_mask (Tensor): Attention mask, shape (batch_size, max_length)
            global_attention_mask (Tensor): Global attention mask, shape (batch_size, max_length)
            cls_positions (List[Tensor]): Indices of `[CLS]` tokens for each batch element.
        """
        outputs = self.longformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            global_attention_mask=global_attention_mask
        )

        last_hidden_state = outputs.last_hidden_state
        cls_positions = cls_positions.view(input_ids.shape[0], -1)
        cls_embeddings = last_hidden_state.gather(1, cls_positions.unsqueeze(-1).expand(-1, -1, last_hidden_state.size(-1)))
        logits = self.classifier(cls_embeddings)

        return logits


if __name__ == "__main__":
    # init handler
    my_handler = EndpointHandler(path=".")

    # prepare sample payload
    payload = {"inputs": """
We are seeking an experienced Accounting Specialist to join our team.
The Accounting Specialist will be responsible for various financial tasks, including reconciling accounts, assist with accounts payable,
preparing financial reports, and assisting the Controller.
The ideal candidate will have a strong background in accounting principles and practices, as well as proficiency in Quickbooks accounting
software, Excel and financial concepts.
Responsibilities:
- Perform general ledger reconciliation to ensure accuracy of financial data
- Prepare and analyze financial reports, bank reconciliations and analysis.
- Collaborate with internal teams to ensure compliance with accounting policies and procedures
- Support financial audits by providing necessary documentation and information
- Accounts Payable - Multiple Companies
- GL Reconciliations
- Prepare Weekly, Monthly and Quarterly Commission Reports
- Daily Bank Deposits
Skills:
- Proficiency in accounting software QuickBooks Online
- Strong knowledge of corporate finance principles and practices
- Experience with general ledger reconciliation
- Ability to understand concise financial reports
- Strong analytical skills for financial analysis
- Knowledge of financial auditing processes
- Understanding of cash flow analysis
- Solid grasp of financial concepts such as revenue recognition, depreciation, and accruals
- Ability to manage multiple priorities and time effectively.
Pay:
$50,000 - $60,000 per year
Benefits:
401(k) matching
Dental insurance
Health insurance
Paid time off
Vision insurance
Experience:
Microsoft Excel: 3 years (Required)
QuickBooks Online: 3 years (Required)
    """}
    # holiday_payload = {"inputs": "Today is a though day"}

    # test the handler
    non_holiday_pred=my_handler(payload)
    # holiday_payload=my_handler(holiday_payload)

    # show results
    print(non_holiday_pred)
    # print("holiday_payload", holiday_payload)