File size: 5,737 Bytes
09e20c2
 
 
 
 
 
 
 
eb7fcd4
09e20c2
 
e24ff62
09e20c2
 
 
e24ff62
 
09e20c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7fcd4
09e20c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466026d
09e20c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466026d
eb7fcd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09e20c2
 
466026d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# -*- coding: utf-8 -*-
"""LLAMA_Fine-Tuning.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1C-kNPOgPiCC9ybxVKhOkWB9ts53APbOb

# Fine-tune Llama 3 in Google Colab
"""

"""
!pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7
!pip install datasets
!pip install --upgrade accelerate peft bitsandbytes transformers trl
"""


import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer

# The model that you want to train from the Hugging Face hub
model_name = "unsloth/llama-3-8b-bnb-4bit"

# The Hugging Face token
token_name = "XXXX"


# Fine-tuned model name
new_model = "llama3_python_TFG"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 2

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}

from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorWithPadding
from datasets import Dataset

def load_text_file(file_path):
    with open(file_path, 'r', encoding='utf-8') as f:
        return [line.strip() for line in f if line.strip()]

train_texts = load_text_file('LLAMA_DatosEntrenamiento.txt')
val_texts = load_text_file('LLAMA_DatosValidacion.txt')

tokenizer = AutoTokenizer.from_pretrained(model_name, token=token_name)

def tokenize_and_encode(texts):
    encodings = tokenizer(texts, truncation=True, padding="longest", max_length=512, return_tensors="pt")
    encodings['labels'] = encodings['input_ids'].clone()  # Duplicar input_ids para usar como labels
    return encodings

train_encodings = tokenize_and_encode(train_texts)
val_encodings = tokenize_and_encode(val_texts)

train_dataset = Dataset.from_dict({key: val.numpy() for key, val in train_encodings.items()})
val_dataset = Dataset.from_dict({key: val.numpy() for key, val in val_encodings.items()})

training_arguments = TrainingArguments(
    output_dir=output_dir,
    evaluation_strategy="steps",  # Evaluar basado en el número de pasos
    eval_steps=500,  # Evaluar cada 500 pasos
    num_train_epochs=1,
    per_device_train_batch_size=4,
    logging_steps=logging_steps,
    save_steps=1000,  # Guardar el modelo cada 1000 pasos para reducir la frecuencia de escritura en disco
    learning_rate=2e-4,
    weight_decay=0.001,
    lr_scheduler_type="cosine",
    warmup_ratio=0.03,
    report_to="tensorboard",
    fp16=False  # Desactivar la precisión mixta para simplificar el entrenamiento
)

model = AutoModelForCausalLM.from_pretrained(model_name, token=token_name)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

trainer = Trainer(
    model=model,
    args=training_arguments,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,
    data_collator=data_collator
)

trainer.train()

model.save_pretrained(new_model)

model.push_to_hub("eibeel/llama3-python-TFG")


# Commented out IPython magic to ensure Python compatibility.
#  %load_ext tensorboard
#  %tensorboard --logdir results/runs