|
import gc |
|
import tracemalloc |
|
import os |
|
import logging |
|
from collections import OrderedDict |
|
from copy import copy |
|
from typing import Dict, Optional, Tuple, List, NamedTuple |
|
import modules.scripts as scripts |
|
from modules import shared, devices, script_callbacks, processing, masking, images |
|
from modules.api.api import decode_base64_to_image |
|
import gradio as gr |
|
import time |
|
|
|
from einops import rearrange |
|
from scripts import global_state, hook, external_code, batch_hijack, controlnet_version, utils |
|
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora |
|
from scripts.processor import * |
|
from scripts.controlnet_lllite import clear_all_lllite |
|
from scripts.controlmodel_ipadapter import clear_all_ip_adapter |
|
from scripts.utils import load_state_dict, get_unique_axis0, align_dim_latent |
|
from scripts.hook import ControlParams, UnetHook, HackedImageRNG |
|
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption |
|
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit |
|
from scripts.controlnet_ui.photopea import Photopea |
|
from scripts.logging import logger |
|
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, StableDiffusionProcessing |
|
from modules.images import save_image |
|
from scripts.infotext import Infotext |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from PIL import Image, ImageFilter, ImageOps |
|
from scripts.lvminthin import lvmin_thin, nake_nms |
|
from scripts.processor import model_free_preprocessors |
|
from scripts.controlnet_model_guess import build_model_by_guess, ControlModel |
|
from scripts.hook import torch_dfs |
|
|
|
|
|
|
|
import tempfile |
|
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio') |
|
os.makedirs(gradio_tempfile_path, exist_ok=True) |
|
|
|
|
|
def clear_all_secondary_control_models(m): |
|
all_modules = torch_dfs(m) |
|
|
|
for module in all_modules: |
|
_original_inner_forward_cn_hijack = getattr(module, '_original_inner_forward_cn_hijack', None) |
|
original_forward_cn_hijack = getattr(module, 'original_forward_cn_hijack', None) |
|
if _original_inner_forward_cn_hijack is not None: |
|
module._forward = _original_inner_forward_cn_hijack |
|
if original_forward_cn_hijack is not None: |
|
module.forward = original_forward_cn_hijack |
|
|
|
clear_all_lllite() |
|
clear_all_ip_adapter() |
|
|
|
|
|
def find_closest_lora_model_name(search: str): |
|
if not search: |
|
return None |
|
if search in global_state.cn_models: |
|
return search |
|
search = search.lower() |
|
if search in global_state.cn_models_names: |
|
return global_state.cn_models_names.get(search) |
|
applicable = [name for name in global_state.cn_models_names.keys() |
|
if search in name.lower()] |
|
if not applicable: |
|
return None |
|
applicable = sorted(applicable, key=lambda name: len(name)) |
|
return global_state.cn_models_names[applicable[0]] |
|
|
|
|
|
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img): |
|
p.__class__ = processing.StableDiffusionProcessingTxt2Img |
|
dummy = processing.StableDiffusionProcessingTxt2Img() |
|
for k,v in dummy.__dict__.items(): |
|
if hasattr(p, k): |
|
continue |
|
setattr(p, k, v) |
|
|
|
|
|
global_state.update_cn_models() |
|
|
|
|
|
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]: |
|
if image is None: |
|
return None |
|
|
|
if isinstance(image, (tuple, list)): |
|
image = {'image': image[0], 'mask': image[1]} |
|
elif not isinstance(image, dict): |
|
image = {'image': image, 'mask': None} |
|
else: |
|
|
|
image = dict(image) |
|
|
|
if isinstance(image['image'], str): |
|
if os.path.exists(image['image']): |
|
image['image'] = np.array(Image.open(image['image'])).astype('uint8') |
|
elif image['image']: |
|
image['image'] = external_code.to_base64_nparray(image['image']) |
|
else: |
|
image['image'] = None |
|
|
|
|
|
if image['image'] is None: |
|
image['mask'] = None |
|
return image |
|
|
|
if 'mask' not in image or image['mask'] is None: |
|
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8) |
|
elif isinstance(image['mask'], str): |
|
if os.path.exists(image['mask']): |
|
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8') |
|
elif image['mask']: |
|
image['mask'] = external_code.to_base64_nparray(image['mask']) |
|
else: |
|
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8) |
|
|
|
return image |
|
|
|
|
|
def prepare_mask( |
|
mask: Image.Image, p: processing.StableDiffusionProcessing |
|
) -> Image.Image: |
|
""" |
|
Prepare an image mask for the inpainting process. |
|
|
|
This function takes as input a PIL Image object and an instance of the |
|
StableDiffusionProcessing class, and performs the following steps to prepare the mask: |
|
|
|
1. Convert the mask to grayscale (mode "L"). |
|
2. If the 'inpainting_mask_invert' attribute of the processing instance is True, |
|
invert the mask colors. |
|
3. If the 'mask_blur' attribute of the processing instance is greater than 0, |
|
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'. |
|
|
|
Args: |
|
mask (Image.Image): The input mask as a PIL Image object. |
|
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class |
|
containing the processing parameters. |
|
|
|
Returns: |
|
mask (Image.Image): The prepared mask as a PIL Image object. |
|
""" |
|
mask = mask.convert("L") |
|
if getattr(p, "inpainting_mask_invert", False): |
|
mask = ImageOps.invert(mask) |
|
|
|
if hasattr(p, 'mask_blur_x'): |
|
if getattr(p, "mask_blur_x", 0) > 0: |
|
np_mask = np.array(mask) |
|
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1 |
|
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x) |
|
mask = Image.fromarray(np_mask) |
|
if getattr(p, "mask_blur_y", 0) > 0: |
|
np_mask = np.array(mask) |
|
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1 |
|
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y) |
|
mask = Image.fromarray(np_mask) |
|
else: |
|
if getattr(p, "mask_blur", 0) > 0: |
|
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur)) |
|
|
|
return mask |
|
|
|
|
|
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]: |
|
""" |
|
Set the random seed for NumPy based on the provided parameters. |
|
|
|
Args: |
|
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class. |
|
|
|
Returns: |
|
Optional[int]: The computed random seed if successful, or None if an exception occurs. |
|
|
|
This function sets the random seed for NumPy using the seed and subseed values from the given instance of |
|
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`. |
|
Otherwise, it takes the maximum of the provided seed value and 0. |
|
|
|
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation |
|
with 0xFFFFFFFF to ensure it fits within a 32-bit integer. |
|
""" |
|
try: |
|
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0)) |
|
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0)) |
|
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF |
|
np.random.seed(seed) |
|
return seed |
|
except Exception as e: |
|
logger.warning(e) |
|
logger.warning('Warning: Failed to use consistent random seed.') |
|
return None |
|
|
|
|
|
def get_pytorch_control(x: np.ndarray) -> torch.Tensor: |
|
|
|
y = x |
|
|
|
|
|
y = torch.from_numpy(y) |
|
y = y.float() / 255.0 |
|
y = rearrange(y, 'h w c -> 1 c h w') |
|
y = y.clone() |
|
y = y.to(devices.get_device_for("controlnet")) |
|
y = y.clone() |
|
return y |
|
|
|
|
|
class Script(scripts.Script, metaclass=( |
|
utils.TimeMeta if logger.level == logging.DEBUG else type)): |
|
|
|
model_cache: Dict[str, ControlModel] = OrderedDict() |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
self.latest_network = None |
|
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules) |
|
self.unloadable = global_state.cn_preprocessor_unloadable |
|
self.input_image = None |
|
self.latest_model_hash = "" |
|
self.enabled_units = [] |
|
self.detected_map = [] |
|
self.post_processors = [] |
|
self.noise_modifier = None |
|
self.ui_batch_option_state = [external_code.BatchOption.DEFAULT.value, False] |
|
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process) |
|
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each) |
|
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each) |
|
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess) |
|
|
|
def title(self): |
|
return "ControlNet" |
|
|
|
def show(self, is_img2img): |
|
return scripts.AlwaysVisible |
|
|
|
@staticmethod |
|
def get_default_ui_unit(is_ui=True): |
|
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit |
|
return cls( |
|
enabled=False, |
|
module="none", |
|
model="None" |
|
) |
|
|
|
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str, photopea: Optional[Photopea]) -> Tuple[ControlNetUiGroup, gr.State]: |
|
group = ControlNetUiGroup( |
|
is_img2img, |
|
Script.get_default_ui_unit(), |
|
self.preprocessor, |
|
photopea, |
|
) |
|
return group, group.render(tabname, elem_id_tabname) |
|
|
|
def ui_batch_options(self, is_img2img: bool, elem_id_tabname: str): |
|
batch_option = gr.Radio( |
|
choices=[e.value for e in external_code.BatchOption], |
|
value=external_code.BatchOption.DEFAULT.value, |
|
label="Batch Option", |
|
elem_id=f"{elem_id_tabname}_controlnet_batch_option_radio", |
|
elem_classes="controlnet_batch_option_radio", |
|
) |
|
use_batch_style_align = gr.Checkbox( |
|
label='[StyleAlign] Align image style in the batch.' |
|
) |
|
|
|
unit_args = [batch_option, use_batch_style_align] |
|
|
|
def update_ui_batch_options(*args): |
|
self.ui_batch_option_state = args |
|
return |
|
|
|
for comp in unit_args: |
|
event_subscribers = [] |
|
if hasattr(comp, "edit"): |
|
event_subscribers.append(comp.edit) |
|
elif hasattr(comp, "click"): |
|
event_subscribers.append(comp.click) |
|
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"): |
|
event_subscribers.append(comp.release) |
|
elif hasattr(comp, "change"): |
|
event_subscribers.append(comp.change) |
|
|
|
if hasattr(comp, "clear"): |
|
event_subscribers.append(comp.clear) |
|
|
|
for event_subscriber in event_subscribers: |
|
event_subscriber( |
|
fn=update_ui_batch_options, inputs=unit_args |
|
) |
|
|
|
return |
|
|
|
def ui(self, is_img2img): |
|
"""this function should create gradio UI elements. See https://gradio.app/docs/#components |
|
The return value should be an array of all components that are used in processing. |
|
Values of those returned components will be passed to run() and process() functions. |
|
""" |
|
infotext = Infotext() |
|
ui_groups = [] |
|
controls = [] |
|
max_models = shared.opts.data.get("control_net_unit_count", 3) |
|
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet" |
|
with gr.Group(elem_id=elem_id_tabname): |
|
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"): |
|
photopea = Photopea() if not shared.opts.data.get("controlnet_disable_photopea_edit", False) else None |
|
if max_models > 1: |
|
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"): |
|
for i in range(max_models): |
|
with gr.Tab(f"ControlNet Unit {i}", |
|
elem_classes=['cnet-unit-tab']): |
|
group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname, photopea) |
|
ui_groups.append(group) |
|
controls.append(state) |
|
else: |
|
with gr.Column(): |
|
group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname, photopea) |
|
ui_groups.append(group) |
|
controls.append(state) |
|
with gr.Accordion(f"Batch Options", open=False, elem_id="controlnet_batch_options"): |
|
self.ui_batch_options(is_img2img, elem_id_tabname) |
|
|
|
for i, ui_group in enumerate(ui_groups): |
|
infotext.register_unit(i, ui_group) |
|
if shared.opts.data.get("control_net_sync_field_args", True): |
|
self.infotext_fields = infotext.infotext_fields |
|
self.paste_field_names = infotext.paste_field_names |
|
|
|
return tuple(controls) |
|
|
|
@staticmethod |
|
def clear_control_model_cache(): |
|
Script.model_cache.clear() |
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
@staticmethod |
|
def load_control_model(p, unet, model) -> ControlModel: |
|
if model in Script.model_cache: |
|
logger.info(f"Loading model from cache: {model}") |
|
control_model = Script.model_cache[model] |
|
if control_model.type == ControlModelType.Controlllite: |
|
|
|
|
|
pass |
|
elif not control_model.type.allow_context_sharing(): |
|
|
|
|
|
|
|
return ControlModel(copy(control_model.model), control_model.type) |
|
else: |
|
return control_model |
|
|
|
|
|
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2): |
|
Script.model_cache.popitem(last=False) |
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
control_model = Script.build_control_model(p, unet, model) |
|
|
|
if shared.opts.data.get("control_net_model_cache_size", 2) > 0: |
|
Script.model_cache[model] = control_model |
|
|
|
return control_model |
|
|
|
@staticmethod |
|
def build_control_model(p, unet, model) -> ControlModel: |
|
if model is None or model == 'None': |
|
raise RuntimeError(f"You have not selected any ControlNet Model.") |
|
|
|
model_path = global_state.cn_models.get(model, None) |
|
if model_path is None: |
|
model = find_closest_lora_model_name(model) |
|
model_path = global_state.cn_models.get(model, None) |
|
|
|
if model_path is None: |
|
raise RuntimeError(f"model not found: {model}") |
|
|
|
|
|
if model_path.startswith("\"") and model_path.endswith("\""): |
|
model_path = model_path[1:-1] |
|
|
|
if not os.path.exists(model_path): |
|
raise ValueError(f"file not found: {model_path}") |
|
|
|
logger.info(f"Loading model: {model}") |
|
state_dict = load_state_dict(model_path) |
|
control_model = build_model_by_guess(state_dict, unet, model_path) |
|
control_model.model.to('cpu', dtype=p.sd_model.dtype) |
|
logger.info(f"ControlNet model {model}({control_model.type}) loaded.") |
|
return control_model |
|
|
|
@staticmethod |
|
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False): |
|
if not force and not shared.opts.data.get("control_net_allow_script_control", False): |
|
return default |
|
|
|
def get_element(obj, strict=False): |
|
if not isinstance(obj, list): |
|
return obj if not strict or idx == 0 else None |
|
elif idx < len(obj): |
|
return obj[idx] |
|
else: |
|
return None |
|
|
|
attribute_value = get_element(getattr(p, attribute, None), strict) |
|
return attribute_value if attribute_value is not None else default |
|
|
|
@staticmethod |
|
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx): |
|
selector = Script.get_remote_call |
|
|
|
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True) |
|
unit.module = selector(p, "control_net_module", unit.module, idx) |
|
unit.model = selector(p, "control_net_model", unit.model, idx) |
|
unit.weight = selector(p, "control_net_weight", unit.weight, idx) |
|
unit.image = selector(p, "control_net_image", unit.image, idx) |
|
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx) |
|
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx) |
|
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx) |
|
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx) |
|
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx) |
|
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx) |
|
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx) |
|
|
|
|
|
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx) |
|
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx) |
|
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx) |
|
|
|
return unit |
|
|
|
@staticmethod |
|
def detectmap_proc(detected_map, module, resize_mode, h, w): |
|
|
|
if 'inpaint' in module: |
|
detected_map = detected_map.astype(np.float32) |
|
else: |
|
detected_map = HWC3(detected_map) |
|
|
|
def safe_numpy(x): |
|
|
|
y = x |
|
|
|
|
|
y = y.copy() |
|
y = np.ascontiguousarray(y) |
|
y = y.copy() |
|
return y |
|
|
|
def high_quality_resize(x, size): |
|
|
|
|
|
|
|
inpaint_mask = None |
|
if x.ndim == 3 and x.shape[2] == 4: |
|
inpaint_mask = x[:, :, 3] |
|
x = x[:, :, 0:3] |
|
|
|
if x.shape[0] != size[1] or x.shape[1] != size[0]: |
|
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1]) |
|
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1]) |
|
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2]))) |
|
is_one_pixel_edge = False |
|
is_binary = False |
|
if unique_color_count == 2: |
|
is_binary = np.min(x) < 16 and np.max(x) > 240 |
|
if is_binary: |
|
xc = x |
|
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) |
|
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) |
|
one_pixel_edge_count = np.where(xc < x)[0].shape[0] |
|
all_edge_count = np.where(x > 127)[0].shape[0] |
|
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count |
|
|
|
if 2 < unique_color_count < 200: |
|
interpolation = cv2.INTER_NEAREST |
|
elif new_size_is_smaller: |
|
interpolation = cv2.INTER_AREA |
|
else: |
|
interpolation = cv2.INTER_CUBIC |
|
|
|
y = cv2.resize(x, size, interpolation=interpolation) |
|
if inpaint_mask is not None: |
|
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation) |
|
|
|
if is_binary: |
|
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8) |
|
if is_one_pixel_edge: |
|
y = nake_nms(y) |
|
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) |
|
y = lvmin_thin(y, prunings=new_size_is_bigger) |
|
else: |
|
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) |
|
y = np.stack([y] * 3, axis=2) |
|
else: |
|
y = x |
|
|
|
if inpaint_mask is not None: |
|
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0 |
|
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8) |
|
y = np.concatenate([y, inpaint_mask], axis=2) |
|
|
|
return y |
|
|
|
if resize_mode == external_code.ResizeMode.RESIZE: |
|
detected_map = high_quality_resize(detected_map, (w, h)) |
|
detected_map = safe_numpy(detected_map) |
|
return get_pytorch_control(detected_map), detected_map |
|
|
|
old_h, old_w, _ = detected_map.shape |
|
old_w = float(old_w) |
|
old_h = float(old_h) |
|
k0 = float(h) / old_h |
|
k1 = float(w) / old_w |
|
|
|
safeint = lambda x: int(np.round(x)) |
|
|
|
if resize_mode == external_code.ResizeMode.OUTER_FIT: |
|
k = min(k0, k1) |
|
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0) |
|
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype) |
|
if len(high_quality_border_color) == 4: |
|
|
|
high_quality_border_color[3] = 255 |
|
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1]) |
|
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k))) |
|
new_h, new_w, _ = detected_map.shape |
|
pad_h = max(0, (h - new_h) // 2) |
|
pad_w = max(0, (w - new_w) // 2) |
|
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map |
|
detected_map = high_quality_background |
|
detected_map = safe_numpy(detected_map) |
|
return get_pytorch_control(detected_map), detected_map |
|
else: |
|
k = max(k0, k1) |
|
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k))) |
|
new_h, new_w, _ = detected_map.shape |
|
pad_h = max(0, (new_h - h) // 2) |
|
pad_w = max(0, (new_w - w) // 2) |
|
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w] |
|
detected_map = safe_numpy(detected_map) |
|
return get_pytorch_control(detected_map), detected_map |
|
|
|
@staticmethod |
|
def get_enabled_units(p): |
|
units = external_code.get_all_units_in_processing(p) |
|
if len(units) == 0: |
|
|
|
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0) |
|
if remote_unit.enabled: |
|
units.append(remote_unit) |
|
|
|
enabled_units = [] |
|
for idx, unit in enumerate(units): |
|
local_unit = Script.parse_remote_call(p, unit, idx) |
|
if not local_unit.enabled: |
|
continue |
|
if hasattr(local_unit, "unfold_merged"): |
|
enabled_units.extend(local_unit.unfold_merged()) |
|
else: |
|
enabled_units.append(copy(local_unit)) |
|
|
|
Infotext.write_infotext(enabled_units, p) |
|
return enabled_units |
|
|
|
@staticmethod |
|
def choose_input_image( |
|
p: processing.StableDiffusionProcessing, |
|
unit: external_code.ControlNetUnit, |
|
idx: int |
|
) -> Tuple[np.ndarray, external_code.ResizeMode]: |
|
""" Choose input image from following sources with descending priority: |
|
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet. |
|
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet. |
|
- unit.image: ControlNet tab input image. |
|
- p.init_images: A1111 img2img tab input image. |
|
|
|
Returns: |
|
- The input image in ndarray form. |
|
- The resize mode. |
|
""" |
|
def parse_unit_image(unit: external_code.ControlNetUnit) -> Union[List[Dict[str, np.ndarray]], Dict[str, np.ndarray]]: |
|
unit_has_multiple_images = ( |
|
isinstance(unit.image, list) and |
|
len(unit.image) > 0 and |
|
"image" in unit.image[0] |
|
) |
|
if unit_has_multiple_images: |
|
return [ |
|
d |
|
for img in unit.image |
|
for d in (image_dict_from_any(img),) |
|
if d is not None |
|
] |
|
return image_dict_from_any(unit.image) |
|
|
|
def decode_image(img) -> np.ndarray: |
|
"""Need to check the image for API compatibility.""" |
|
if isinstance(img, str): |
|
return np.asarray(decode_base64_to_image(image['image'])) |
|
else: |
|
assert isinstance(img, np.ndarray) |
|
return img |
|
|
|
|
|
p_image_control = getattr(p, "image_control", None) |
|
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx) |
|
image = parse_unit_image(unit) |
|
a1111_image = getattr(p, "init_images", [None])[0] |
|
|
|
resize_mode = external_code.resize_mode_from_value(unit.resize_mode) |
|
|
|
if batch_hijack.instance.is_batch and p_image_control is not None: |
|
logger.warning("Warn: Using legacy field 'p.image_control'.") |
|
input_image = HWC3(np.asarray(p_image_control)) |
|
elif p_input_image is not None: |
|
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'") |
|
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image: |
|
color = HWC3(np.asarray(p_input_image['image'])) |
|
alpha = np.asarray(p_input_image['mask'])[..., None] |
|
input_image = np.concatenate([color, alpha], axis=2) |
|
else: |
|
input_image = HWC3(np.asarray(p_input_image)) |
|
elif image: |
|
if isinstance(image, list): |
|
|
|
|
|
input_image = [HWC3(decode_image(img['image'])) for img in image] |
|
else: |
|
input_image = HWC3(decode_image(image['image'])) |
|
if 'mask' in image and image['mask'] is not None: |
|
while len(image['mask'].shape) < 3: |
|
image['mask'] = image['mask'][..., np.newaxis] |
|
if 'inpaint' in unit.module: |
|
logger.info("using inpaint as input") |
|
color = HWC3(image['image']) |
|
alpha = image['mask'][:, :, 0:1] |
|
input_image = np.concatenate([color, alpha], axis=2) |
|
elif ( |
|
not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False) and |
|
|
|
|
|
|
|
not ( |
|
(image['mask'][:, :, 0] <= 5).all() or |
|
(image['mask'][:, :, 0] >= 250).all() |
|
) |
|
): |
|
logger.info("using mask as input") |
|
input_image = HWC3(image['mask'][:, :, 0]) |
|
unit.module = 'none' |
|
elif a1111_image is not None: |
|
input_image = HWC3(np.asarray(a1111_image)) |
|
a1111_i2i_resize_mode = getattr(p, "resize_mode", None) |
|
assert a1111_i2i_resize_mode is not None |
|
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode) |
|
|
|
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None) |
|
if 'inpaint' in unit.module: |
|
if a1111_mask_image is not None: |
|
a1111_mask = np.array(prepare_mask(a1111_mask_image, p)) |
|
assert a1111_mask.ndim == 2 |
|
assert a1111_mask.shape[0] == input_image.shape[0] |
|
assert a1111_mask.shape[1] == input_image.shape[1] |
|
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2) |
|
else: |
|
input_image = np.concatenate([ |
|
input_image[:, :, 0:3], |
|
np.zeros_like(input_image, dtype=np.uint8)[:, :, 0:1], |
|
], axis=2) |
|
else: |
|
|
|
if batch_hijack.instance.is_batch: |
|
shared.state.interrupted = True |
|
raise ValueError("controlnet is enabled but no input image is given") |
|
|
|
assert isinstance(input_image, (np.ndarray, list)) |
|
return input_image, resize_mode |
|
|
|
@staticmethod |
|
def try_crop_image_with_a1111_mask( |
|
p: StableDiffusionProcessing, |
|
unit: external_code.ControlNetUnit, |
|
input_image: np.ndarray, |
|
resize_mode: external_code.ResizeMode, |
|
) -> np.ndarray: |
|
""" |
|
Crop ControlNet input image based on A1111 inpaint mask given. |
|
This logic is crutial in upscale scripts, as they use A1111 mask + inpaint_full_res |
|
to crop tiles. |
|
""" |
|
|
|
|
|
|
|
|
|
is_upscale_script = any("upscale" in k.lower() for k in getattr(p, "extra_generation_params", {}).keys()) |
|
logger.debug(f"is_upscale_script={is_upscale_script}") |
|
|
|
|
|
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None) |
|
is_only_masked_inpaint = ( |
|
issubclass(type(p), StableDiffusionProcessingImg2Img) and |
|
p.inpaint_full_res and |
|
a1111_mask_image is not None |
|
) |
|
if ( |
|
'reference' not in unit.module |
|
and is_only_masked_inpaint |
|
and (is_upscale_script or unit.inpaint_crop_input_image) |
|
): |
|
logger.debug("Crop input image based on A1111 mask.") |
|
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])] |
|
input_image = [Image.fromarray(x) for x in input_image] |
|
|
|
mask = prepare_mask(a1111_mask_image, p) |
|
|
|
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding) |
|
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height) |
|
|
|
input_image = [ |
|
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height) |
|
for i in input_image |
|
] |
|
|
|
input_image = [x.crop(crop_region) for x in input_image] |
|
input_image = [ |
|
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height) |
|
for x in input_image |
|
] |
|
|
|
input_image = [np.asarray(x)[:, :, 0] for x in input_image] |
|
input_image = np.stack(input_image, axis=2) |
|
return input_image |
|
|
|
@staticmethod |
|
def bound_check_params(unit: external_code.ControlNetUnit) -> None: |
|
""" |
|
Checks and corrects negative parameters in ControlNetUnit 'unit'. |
|
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to |
|
their default values if negative. |
|
|
|
Args: |
|
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check. |
|
""" |
|
cfg = preprocessor_sliders_config.get( |
|
global_state.get_module_basename(unit.module), []) |
|
defaults = { |
|
param: cfg_default['value'] |
|
for param, cfg_default in zip( |
|
("processor_res", 'threshold_a', 'threshold_b'), cfg) |
|
if cfg_default is not None |
|
} |
|
for param, default_value in defaults.items(): |
|
value = getattr(unit, param) |
|
if value < 0: |
|
setattr(unit, param, default_value) |
|
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.') |
|
|
|
@staticmethod |
|
def check_sd_version_compatible(unit: external_code.ControlNetUnit) -> None: |
|
""" |
|
Checks whether the given ControlNet unit has model compatible with the currently |
|
active sd model. An exception is thrown if ControlNet unit is detected to be |
|
incompatible. |
|
""" |
|
sd_version = global_state.get_sd_version() |
|
assert sd_version != StableDiffusionVersion.UNKNOWN |
|
|
|
if "revision" in unit.module.lower() and sd_version != StableDiffusionVersion.SDXL: |
|
raise Exception(f"Preprocessor 'revision' only supports SDXL. Current SD base model is {sd_version}.") |
|
|
|
|
|
if unit.model is None or unit.model.lower() == "none": |
|
return |
|
|
|
cnet_sd_version = StableDiffusionVersion.detect_from_model_name(unit.model) |
|
|
|
if cnet_sd_version == StableDiffusionVersion.UNKNOWN: |
|
logger.warn(f"Unable to determine version for ControlNet model '{unit.model}'.") |
|
return |
|
|
|
if not sd_version.is_compatible_with(cnet_sd_version): |
|
raise Exception(f"ControlNet model {unit.model}({cnet_sd_version}) is not compatible with sd model({sd_version})") |
|
|
|
@staticmethod |
|
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]: |
|
"""Returns (h, w, hr_h, hr_w).""" |
|
h = align_dim_latent(p.height) |
|
w = align_dim_latent(p.width) |
|
|
|
high_res_fix = ( |
|
isinstance(p, StableDiffusionProcessingTxt2Img) |
|
and getattr(p, 'enable_hr', False) |
|
) |
|
if high_res_fix: |
|
if p.hr_resize_x == 0 and p.hr_resize_y == 0: |
|
hr_y = int(p.height * p.hr_scale) |
|
hr_x = int(p.width * p.hr_scale) |
|
else: |
|
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x |
|
hr_y = align_dim_latent(hr_y) |
|
hr_x = align_dim_latent(hr_x) |
|
else: |
|
hr_y = h |
|
hr_x = w |
|
|
|
return h, w, hr_y, hr_x |
|
|
|
def controlnet_main_entry(self, p): |
|
sd_ldm = p.sd_model |
|
unet = sd_ldm.model.diffusion_model |
|
self.noise_modifier = None |
|
|
|
setattr(p, 'controlnet_control_loras', []) |
|
|
|
if self.latest_network is not None: |
|
|
|
self.latest_network.restore() |
|
|
|
|
|
clear_all_secondary_control_models(unet) |
|
|
|
if not batch_hijack.instance.is_batch: |
|
self.enabled_units = Script.get_enabled_units(p) |
|
|
|
batch_option_uint_separate = self.ui_batch_option_state[0] == external_code.BatchOption.SEPARATE.value |
|
batch_option_style_align = self.ui_batch_option_state[1] |
|
|
|
if len(self.enabled_units) == 0 and not batch_option_style_align: |
|
self.latest_network = None |
|
return |
|
|
|
logger.info(f"unit_separate = {batch_option_uint_separate}, style_align = {batch_option_style_align}") |
|
|
|
detected_maps = [] |
|
forward_params = [] |
|
post_processors = [] |
|
|
|
|
|
if self.latest_model_hash != p.sd_model.sd_model_hash: |
|
Script.clear_control_model_cache() |
|
|
|
for idx, unit in enumerate(self.enabled_units): |
|
unit.module = global_state.get_module_basename(unit.module) |
|
|
|
|
|
module_list = [unit.module for unit in self.enabled_units] |
|
for key in self.unloadable: |
|
if key not in module_list: |
|
self.unloadable.get(key, lambda:None)() |
|
|
|
self.latest_model_hash = p.sd_model.sd_model_hash |
|
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False) |
|
h, w, hr_y, hr_x = Script.get_target_dimensions(p) |
|
|
|
for idx, unit in enumerate(self.enabled_units): |
|
Script.bound_check_params(unit) |
|
Script.check_sd_version_compatible(unit) |
|
if ( |
|
"ip-adapter" in unit.module and |
|
not global_state.ip_adapter_pairing_model[unit.module](unit.model) |
|
): |
|
logger.error(f"Invalid pair of IP-Adapter preprocessor({unit.module}) and model({unit.model}).\n" |
|
"Please follow following pairing logic:\n" |
|
+ global_state.ip_adapter_pairing_logic_text) |
|
continue |
|
|
|
if ( |
|
'inpaint_only' == unit.module and |
|
issubclass(type(p), StableDiffusionProcessingImg2Img) and |
|
p.image_mask is not None |
|
): |
|
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. Falls back to inpaint_global_harmonious.') |
|
unit.module = 'inpaint' |
|
|
|
if unit.module in model_free_preprocessors: |
|
model_net = None |
|
if 'reference' in unit.module: |
|
control_model_type = ControlModelType.AttentionInjection |
|
elif 'revision' in unit.module: |
|
control_model_type = ControlModelType.ReVision |
|
else: |
|
raise Exception("Unable to determine control_model_type.") |
|
else: |
|
model_net, control_model_type = Script.load_control_model(p, unet, unit.model) |
|
model_net.reset() |
|
|
|
if control_model_type == ControlModelType.ControlLoRA: |
|
control_lora = model_net.control_model |
|
bind_control_lora(unet, control_lora) |
|
p.controlnet_control_loras.append(control_lora) |
|
|
|
input_image, resize_mode = Script.choose_input_image(p, unit, idx) |
|
if isinstance(input_image, list): |
|
assert unit.accepts_multiple_inputs() |
|
input_images = input_image |
|
else: |
|
input_image = Script.try_crop_image_with_a1111_mask(p, unit, input_image, resize_mode) |
|
input_image = np.ascontiguousarray(input_image.copy()).copy() |
|
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT: |
|
|
|
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x) |
|
if unit.pixel_perfect: |
|
unit.processor_res = external_code.pixel_perfect_resolution( |
|
input_image, |
|
target_H=h, |
|
target_W=w, |
|
resize_mode=resize_mode, |
|
) |
|
input_images = [input_image] |
|
|
|
|
|
|
|
|
|
|
|
seed = set_numpy_seed(p) |
|
logger.debug(f"Use numpy seed {seed}.") |
|
logger.info(f"Using preprocessor: {unit.module}") |
|
logger.info(f'preprocessor resolution = {unit.processor_res}') |
|
|
|
def store_detected_map(detected_map, module: str) -> None: |
|
if unit.save_detected_map: |
|
detected_maps.append((detected_map, module)) |
|
|
|
def preprocess_input_image(input_image: np.ndarray): |
|
""" Preprocess single input image. """ |
|
detected_map, is_image = self.preprocessor[unit.module]( |
|
input_image, |
|
res=unit.processor_res, |
|
thr_a=unit.threshold_a, |
|
thr_b=unit.threshold_b, |
|
low_vram=( |
|
("clip" in unit.module or unit.module == "ip-adapter_face_id_plus") and |
|
shared.opts.data.get("controlnet_clip_detector_on_cpu", False) |
|
), |
|
) |
|
if high_res_fix: |
|
if is_image: |
|
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x) |
|
store_detected_map(hr_detected_map, unit.module) |
|
else: |
|
hr_control = detected_map |
|
else: |
|
hr_control = None |
|
|
|
if is_image: |
|
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w) |
|
store_detected_map(detected_map, unit.module) |
|
else: |
|
control = detected_map |
|
store_detected_map(input_image, unit.module) |
|
|
|
if control_model_type == ControlModelType.T2I_StyleAdapter: |
|
control = control['last_hidden_state'] |
|
|
|
if control_model_type == ControlModelType.ReVision: |
|
control = control['image_embeds'] |
|
return control, hr_control |
|
|
|
controls, hr_controls = list(zip(*[preprocess_input_image(img) for img in input_images])) |
|
if len(controls) == len(hr_controls) == 1: |
|
control = controls[0] |
|
hr_control = hr_controls[0] |
|
else: |
|
control = controls |
|
hr_control = hr_controls |
|
|
|
preprocessor_dict = dict( |
|
name=unit.module, |
|
preprocessor_resolution=unit.processor_res, |
|
threshold_a=unit.threshold_a, |
|
threshold_b=unit.threshold_b |
|
) |
|
|
|
global_average_pooling = ( |
|
control_model_type.is_controlnet() and |
|
model_net.control_model.global_average_pooling |
|
) |
|
control_mode = external_code.control_mode_from_value(unit.control_mode) |
|
forward_param = ControlParams( |
|
control_model=model_net, |
|
preprocessor=preprocessor_dict, |
|
hint_cond=control, |
|
weight=unit.weight, |
|
guidance_stopped=False, |
|
start_guidance_percent=unit.guidance_start, |
|
stop_guidance_percent=unit.guidance_end, |
|
advanced_weighting=unit.advanced_weighting, |
|
control_model_type=control_model_type, |
|
global_average_pooling=global_average_pooling, |
|
hr_hint_cond=hr_control, |
|
hr_option=HiResFixOption.from_value(unit.hr_option) if high_res_fix else HiResFixOption.BOTH, |
|
soft_injection=control_mode != external_code.ControlMode.BALANCED, |
|
cfg_injection=control_mode == external_code.ControlMode.CONTROL, |
|
) |
|
forward_params.append(forward_param) |
|
|
|
if 'inpaint_only' in unit.module: |
|
final_inpaint_feed = hr_control if hr_control is not None else control |
|
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy() |
|
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy() |
|
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32) |
|
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32) |
|
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7) |
|
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8)) |
|
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None] |
|
_, Hmask, Wmask = final_inpaint_mask.shape |
|
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy()) |
|
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy()) |
|
|
|
def inpaint_only_post_processing(x): |
|
_, H, W = x.shape |
|
if Hmask != H or Wmask != W: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
r = final_inpaint_raw.to(x.dtype).to(x.device) |
|
m = final_inpaint_mask.to(x.dtype).to(x.device) |
|
y = m * x.clip(0, 1) + (1 - m) * r |
|
y = y.clip(0, 1) |
|
return y |
|
|
|
post_processors.append(inpaint_only_post_processing) |
|
|
|
if 'recolor' in unit.module: |
|
final_feed = hr_control if hr_control is not None else control |
|
final_feed = final_feed.detach().cpu().numpy() |
|
final_feed = np.ascontiguousarray(final_feed).copy() |
|
final_feed = final_feed[0, 0, :, :].astype(np.float32) |
|
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8) |
|
Hfeed, Wfeed = final_feed.shape |
|
|
|
if 'luminance' in unit.module: |
|
|
|
def recolor_luminance_post_processing(x): |
|
C, H, W = x.shape |
|
if Hfeed != H or Wfeed != W or C != 3: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
h = x.detach().cpu().numpy().transpose((1, 2, 0)) |
|
h = (h * 255).clip(0, 255).astype(np.uint8) |
|
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB) |
|
h[:, :, 0] = final_feed |
|
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB) |
|
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1)) |
|
y = torch.from_numpy(h).clip(0, 1).to(x) |
|
return y |
|
|
|
post_processors.append(recolor_luminance_post_processing) |
|
|
|
if 'intensity' in unit.module: |
|
|
|
def recolor_intensity_post_processing(x): |
|
C, H, W = x.shape |
|
if Hfeed != H or Wfeed != W or C != 3: |
|
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.') |
|
return x |
|
h = x.detach().cpu().numpy().transpose((1, 2, 0)) |
|
h = (h * 255).clip(0, 255).astype(np.uint8) |
|
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV) |
|
h[:, :, 2] = final_feed |
|
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB) |
|
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1)) |
|
y = torch.from_numpy(h).clip(0, 1).to(x) |
|
return y |
|
|
|
post_processors.append(recolor_intensity_post_processing) |
|
|
|
if '+lama' in unit.module: |
|
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control) |
|
self.noise_modifier = forward_param.used_hint_cond_latent |
|
|
|
del model_net |
|
|
|
is_low_vram = any(unit.low_vram for unit in self.enabled_units) |
|
|
|
for i, param in enumerate(forward_params): |
|
if param.control_model_type == ControlModelType.IPAdapter: |
|
param.control_model.hook( |
|
model=unet, |
|
preprocessor_outputs=param.hint_cond, |
|
weight=param.weight, |
|
dtype=torch.float32, |
|
start=param.start_guidance_percent, |
|
end=param.stop_guidance_percent |
|
) |
|
if param.control_model_type == ControlModelType.Controlllite: |
|
param.control_model.hook( |
|
model=unet, |
|
cond=param.hint_cond, |
|
weight=param.weight, |
|
start=param.start_guidance_percent, |
|
end=param.stop_guidance_percent |
|
) |
|
if param.control_model_type == ControlModelType.InstantID: |
|
|
|
|
|
assert i > 0, "InstantID control model should follow ipadapter model." |
|
ip_adapter_param = forward_params[i - 1] |
|
assert ip_adapter_param.control_model_type == ControlModelType.IPAdapter, \ |
|
"InstantID control model should follow ipadapter model." |
|
control_model = ip_adapter_param.control_model |
|
assert hasattr(control_model, "image_emb") |
|
param.control_context_override = control_model.image_emb |
|
|
|
self.latest_network = UnetHook(lowvram=is_low_vram) |
|
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p, |
|
batch_option_uint_separate=batch_option_uint_separate, |
|
batch_option_style_align=batch_option_style_align) |
|
|
|
self.detected_map = detected_maps |
|
self.post_processors = post_processors |
|
|
|
def controlnet_hack(self, p): |
|
t = time.time() |
|
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False): |
|
tracemalloc.start() |
|
setattr(self, "malloc_begin", tracemalloc.take_snapshot()) |
|
|
|
self.controlnet_main_entry(p) |
|
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False): |
|
logger.info("After hook malloc:") |
|
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]: |
|
logger.info(stat) |
|
|
|
if len(self.enabled_units) > 0: |
|
logger.info(f'ControlNet Hooked - Time = {time.time() - t}') |
|
|
|
@staticmethod |
|
def process_has_sdxl_refiner(p): |
|
return getattr(p, 'refiner_checkpoint', None) is not None |
|
|
|
def process(self, p, *args, **kwargs): |
|
if not Script.process_has_sdxl_refiner(p): |
|
self.controlnet_hack(p) |
|
return |
|
|
|
def before_process_batch(self, p, *args, **kwargs): |
|
if self.noise_modifier is not None: |
|
p.rng = HackedImageRNG(rng=p.rng, |
|
noise_modifier=self.noise_modifier, |
|
sd_model=p.sd_model) |
|
self.noise_modifier = None |
|
if Script.process_has_sdxl_refiner(p): |
|
self.controlnet_hack(p) |
|
return |
|
|
|
def postprocess_batch(self, p, *args, **kwargs): |
|
images = kwargs.get('images', []) |
|
for post_processor in self.post_processors: |
|
for i in range(len(images)): |
|
images[i] = post_processor(images[i]) |
|
return |
|
|
|
def postprocess(self, p, processed, *args): |
|
sd_ldm = p.sd_model |
|
unet = sd_ldm.model.diffusion_model |
|
|
|
clear_all_secondary_control_models(unet) |
|
|
|
self.noise_modifier = None |
|
|
|
for control_lora in getattr(p, 'controlnet_control_loras', []): |
|
unbind_control_lora(control_lora) |
|
p.controlnet_control_loras = [] |
|
|
|
self.post_processors = [] |
|
setattr(p, 'controlnet_vae_cache', None) |
|
|
|
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower() |
|
self.post_processors = [] |
|
|
|
if not batch_hijack.instance.is_batch: |
|
self.enabled_units.clear() |
|
|
|
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None: |
|
for detect_map, module in self.detected_map: |
|
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module) |
|
if not os.path.isabs(detectmap_dir): |
|
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir) |
|
if module != "none": |
|
os.makedirs(detectmap_dir, exist_ok=True) |
|
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy()) |
|
save_image(img, detectmap_dir, module) |
|
|
|
if self.latest_network is None: |
|
return |
|
|
|
if not batch_hijack.instance.is_batch: |
|
if not shared.opts.data.get("control_net_no_detectmap", False): |
|
if 'sd upscale' not in processor_params_flag: |
|
if self.detected_map is not None: |
|
for detect_map, module in self.detected_map: |
|
if detect_map is None: |
|
continue |
|
detect_map = np.ascontiguousarray(detect_map.copy()).copy() |
|
detect_map = external_code.visualize_inpaint_mask(detect_map) |
|
processed.images.extend([ |
|
Image.fromarray( |
|
detect_map.clip(0, 255).astype(np.uint8) |
|
) |
|
]) |
|
|
|
self.input_image = None |
|
self.latest_network.restore() |
|
self.latest_network = None |
|
self.detected_map.clear() |
|
|
|
gc.collect() |
|
devices.torch_gc() |
|
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False): |
|
logger.info("After generation:") |
|
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]: |
|
logger.info(stat) |
|
tracemalloc.stop() |
|
|
|
def batch_tab_process(self, p, batches, *args, **kwargs): |
|
self.enabled_units = Script.get_enabled_units(p) |
|
for unit_i, unit in enumerate(self.enabled_units): |
|
unit.batch_images = iter([batch[unit_i] for batch in batches]) |
|
|
|
def batch_tab_process_each(self, p, *args, **kwargs): |
|
for unit_i, unit in enumerate(self.enabled_units): |
|
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue |
|
|
|
unit.image = next(unit.batch_images) |
|
|
|
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs): |
|
for unit_i, unit in enumerate(self.enabled_units): |
|
if getattr(unit, 'loopback', False): |
|
output_images = getattr(processed, 'images', [])[processed.index_of_first_image:] |
|
if output_images: |
|
unit.image = np.array(output_images[0]) |
|
else: |
|
logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead') |
|
|
|
def batch_tab_postprocess(self, p, *args, **kwargs): |
|
self.enabled_units.clear() |
|
self.input_image = None |
|
if self.latest_network is None: return |
|
|
|
self.latest_network.restore() |
|
self.latest_network = None |
|
self.detected_map.clear() |
|
|
|
|
|
def on_ui_settings(): |
|
section = ('control_net', "ControlNet") |
|
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo( |
|
global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section)) |
|
shared.opts.add_option("control_net_models_path", shared.OptionInfo( |
|
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section)) |
|
shared.opts.add_option("control_net_modules_path", shared.OptionInfo( |
|
"", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section)) |
|
shared.opts.add_option("control_net_unit_count", shared.OptionInfo( |
|
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section)) |
|
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo( |
|
2, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section)) |
|
shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo( |
|
7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section)) |
|
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo( |
|
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo( |
|
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo( |
|
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo( |
|
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo( |
|
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo( |
|
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo( |
|
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo( |
|
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo( |
|
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo( |
|
False, "Ignore mask on ControlNet input image if control type is not inpaint", |
|
gr.Checkbox, {"interactive": True}, section=section)) |
|
shared.opts.add_option("controlnet_clip_detector_on_cpu", shared.OptionInfo( |
|
False, "Load CLIP preprocessor model on CPU", |
|
gr.Checkbox, {"interactive": True}, section=section)) |
|
|
|
|
|
batch_hijack.instance.do_hijack() |
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted) |
|
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component) |
|
script_callbacks.on_before_reload(ControlNetUiGroup.reset) |