File size: 1,986 Bytes
cb3b293 caddd97 cb3b293 caddd97 cb3b293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-lit-simplif
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-small-lit-simplif
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8832
- Rouge1: 57.5616
- Rouge2: 43.0588
- Rougel: 54.6246
- Rougelsum: 54.8382
- Gen Len: 18.4914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.3943 | 1.0 | 698 | 1.0480 | 57.3763 | 43.1329 | 54.1155 | 54.4964 | 18.6571 |
| 1.1857 | 2.0 | 1396 | 0.9521 | 57.315 | 43.2483 | 54.4032 | 54.7664 | 18.6771 |
| 1.0406 | 3.0 | 2094 | 0.9075 | 57.6951 | 43.4451 | 54.8174 | 55.0469 | 18.5343 |
| 0.9861 | 4.0 | 2792 | 0.8873 | 57.8533 | 43.409 | 54.7583 | 55.0156 | 18.5971 |
| 0.9592 | 5.0 | 3490 | 0.8832 | 57.5616 | 43.0588 | 54.6246 | 54.8382 | 18.4914 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|